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Preface

The present monograph, based mainly on studies of the authors and their co-
authors, and also on lectures given by the authors in the past few years, has the
following particular aims:

To present basic results (with proofs) of optimal stopping theory in
both discrete and continuous time using both martingale and Marko-
vian approaches ;

To select a series of concrete problems of general interest from the the-
ory of probability, mathematical statistics, and mathematical finance
that can be reformulated as problems of optimal stopping of stochastic
processes and solved by reduction to free-boundary problems of real
analysis (Stefan problems).

The table of contents found below gives a clearer idea of the material included
in the monograph. Credits and historical comments are given at the end of each
chapter or section. The bibliography contains a material for further reading.
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also grateful to INTAS and RFBR for the support provided under their grants.
The grant NSh-1758.2003.1 is gratefully acknowledged. Large portions of the text
were presented in the “School and Symposium on Optimal Stopping with Appli-
cations” that was held in Manchester, England from 17th to 27th January 2006.
The authors are grateful to EPSRC and LMS for the sponsorship and financial
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Introduction

1. The following scheme illustrates the kind of concrete problems of general interest
that will be studied in the monograph:

A. THEORY OF PROBABILITY
           sharp inequalities

B. MATHEMATICAL STATISTICS
           sequential analysis

C. MATHEMATICAL FINANCE
       stochastic equilibria

The solution method for problems A, B, C consists of reformulation to an optimal
stopping problem and reduction to a free-boundary problem as follows:

A , B , C 

Optimal stopping problems

Free-boundary problems

1

2 3

4

Steps 1 and 2 indicate the way of reformulation and reduction. Steps 3 and 4
indicate the way of finding a solution to the initial problem.

2. To get some idea of the character of problems A, B, C that will be studied,
let us briefly consider the following simple examples.

(A) If B = (Bt)t≥0 is a standard Brownian motion, then it is well known
that the following maximal equality holds:

E
(

max
0≤t≤T

|Bt|
)

=
√

π

2
T (1)
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for every deterministic time T . Suppose now that instead of the deterministic time
T we are given some (random) stopping time τ of B . The question then arises
naturally of how to determine E (max 0≤t≤τ |Bt|) . On closer inspection, however, it
becomes clear that it is virtually impossible to compute this expectation for every
stopping time τ of B . Thus, as the second best thing, one can try to bound the
expectation with a quantity which is easier to compute. A natural candidate for
the latter is Eτ at least when finite. In this way a problem A has appeared. This
problem then leads to the following maximal inequality:

E
(

max
0≤t≤τ

|Bt|
)
≤ C

√
Eτ (2)

which is valid for all stopping times τ of B with the best constant C equal to√
2 .

We will see in Chapter V that the problem A just formulated can be solved
in the form (2) by reformulation to the following optimal stopping problem:

V∗ = sup
τ

E
(

max
0≤t≤τ

|Bt| − cτ
)

(3)

where the supremum is taken over all stopping times τ of B satisfying Eτ < ∞ ,
and the constant c > 0 is given and fixed. It constitutes Step 1 in the diagram
above.

If V∗ = V∗(c) can be computed, then from (3) we get

E
(

max
0≤t≤τ

|Bt|
)
≤ V∗(c) + c Eτ (4)

for all stopping times τ of B and all c > 0 . Hence we find

E
(

max
0≤t≤τ

|Bt|
)
≤ inf

c>0

(
V∗(c) + c Eτ

)
(5)

for all stopping times τ of B . The right-hand side in (5) defines a function of
Eτ that, in view of (3), provides a sharp bound of the left-hand side.

We will see in Chapter IV that the optimal stopping problem (3) can be
reduced to a free-boundary problem. This constitutes Step 2 in the diagram above.
Solving the free-boundary problem one finds that V∗(c) = 1/2c . Inserting this
into (5) yields

inf
c>0

E
(
V∗(c) + c Eτ

)
=

√
2 Eτ (6)

so that the inequality (5) reads as follows:

E
(

max
0≤t≤τ

|Bt|
)
≤

√
2 Eτ (7)

for all stopping times τ of B . This is exactly the inequality (2) above with
C =

√
2 . From the formulation of the optimal stopping problem (3) it is not
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surprising that equality in (7) is attained at a stopping time for which both sides
in (7) are non-zero. This shows that the constant

√
2 is best possible in (7)

as claimed in (2) above. The solution of (3) and its use in (2) just explained
constitute Steps 3 and 4 in the diagram above and complete the solution to the
initial problem.

Chapter V studies similar sharp inequalities for other stochastic processes
using ramifications of the method just exposed. Apart from being able to derive
sharp versions of known inequalities the method can also be used to derive new
inequalities.

(B) The classic example of a problem in sequential analysis is the problem
of sequential testing of two statistical hypotheses

H0 : µ = µ0 and H1 : µ = µ1 (8)

about the drift parameter µ ∈ R of the observed process

Xt = µt + Bt (9)

for t ≥ 0 where B = (Bt)t≥0 is a standard Brownian motion.

Another classic example of a problem in sequential analysis is the problem
of sequential testing of two statistical hypotheses

H0 : λ = λ0 and H1 : λ = λ1 (10)

about the intensity parameter λ > 0 of the observed process

Xt = Nλ
t (11)

for t ≥ 0 where N = (Nt)t≥0 is a standard Poisson process.

The basic problem in both cases seeks to find the optimal decision rule
(τ∗, d∗) in the class ∆(α, β) consisting of decision rules (d, τ) , where τ is the
time of stopping and accepting H1 if d = d1 or accepting H0 if d = d0 , such
that the probability errors of the first and second kind satisfy:

P(accept H1 | true H0) ≤ α, (12)
P(accept H0 | true H1) ≤ β (13)

and the mean times of observation E0τ and E1τ are as small as possible. It is
assumed above that α > 0 and β > 0 with α + β < 1 .

It turns out that with this (variational) problem one may associate an opti-
mal stopping (Bayesian) problem which in turn can be reduced to a free-boundary
problem. This constitutes Steps 1 and 2 in the diagram above. Solving the free-
boundary problem leads to an optimal decision rule (τ∗, d∗) in the class ∆(α, β)
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satisfying (12) and (13) as well as the following two identities:

E0τ = inf
(τ,d)

E0τ, (14)

E1τ = inf
(τ,d)

E1τ (15)

where the infimum is taken over all decision rules (τ, d) in ∆(α, β) . This consti-
tutes Steps 3 and 4 in the diagram above.

While the methodology just described is the same for both problems (8) and
(10), it needs to be pointed out that the solution of the Bayesian problem in the
Poisson case is more difficult than in the Brownian case. This is primarily due
to the fact that, unlike in the Brownian case, the sample paths of the observed
process are discontinuous in the Poisson case.

Chapter VI studies these as well as closely related problems of quickest de-
tection. Two of the prime findings of this chapter, which also reflect the historical
development of these ideas, are the principles of smooth and continuous fit, re-
spectively.

(C) One of the best-known specific problems of mathematical finance, that
has a direct connection with optimal stopping problems, is the problem of deter-
mining the arbitrage-free price of the American put option.

Consider the Black–Scholes model where the stock price X = (Xt)t≥0 is
assumed to follow a geometric Brownian motion

Xt = x exp
(
σBt + (r − σ2/2) t

)
(16)

where x > 0 , σ > 0 , r > 0 and B = (Bt)t≥0 is a standard Brownian motion.
By Itô’s formula one finds that the process X solves

dXt = rXt dt + σXt dBt (17)

with X0 = x . General theory of financial mathematics makes it clear that the
initial problem of determining the arbitrage-free price of the American put option
can be reformulated as the following optimal stopping problem:

V∗ = sup
τ

Ee−rτ (K − Xτ )+ (18)

where the supremum is taken over all stopping times τ of X . This constitutes
Step 1 in the diagram above. The constant K > 0 is called the ‘strike price’. It
has a certain financial meaning which we set aside for now.

It turns out that the optimal stopping problem (18) can be reduced to a
free-boundary problem which can be solved explicitly. It yields the existence of a
constant b∗ such that the stopping time

τ∗ = inf { t ≥ 0 : Xt ≤ b∗ } (19)
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is optimal in (18). This constitutes Steps 2 and 3 in the diagram above. Both the
optimal stopping point b∗ and the arbitrage-free price V∗ can be expressed ex-
plicitly in terms of the other parameters in the problem. A financial interpretation
of these expressions constitutes Step 4 in the diagram above.

In the formulation of the problem (18) above no restriction was imposed on
the class of admissible stopping times, i.e. for certain reasons of simplicity it was
assumed there that τ belongs to the class of stopping times

M = { τ : 0 ≤ τ < ∞ } (20)

without any restriction on their size.

A more realistic requirement on a stopping time in search for the arbitrage-
free price leads to the following optimal stopping problem:

V T
∗ = sup

τ∈MT

Ee−rτ(K − Xτ )+ (21)

where the supremum is taken over all τ belonging to the class of stopping times

MT = { τ : 0 ≤ τ ≤ T } (22)

with the horizon T being finite.

The optimal stopping problem (21) can be reduced to a free-boundary prob-
lem that apparently cannot be solved explicitly. Its study yields that the stopping
time

τ∗ = inf { 0 ≤ t ≤ T : Xt ≤ b∗(t) } (23)

is optimal in (21), where b∗ : [0, T ] → R is an increasing continuous function. A
nonlinear Volterra integral equation can be derived which characterizes the optimal
stopping boundary t �→ b∗(t) and can be used to compute its values numerically
as accurate as desired. The comments on Steps 1–4 in the diagram above made in
the infinite horizon case carry over to the finite horizon case without any change.

Chapter VII studies these and other similar problems that arise from var-
ious financial interpretations of options. Chapter VIII studies optimal prediction
problems. Fuller understanding of their scope is still incomplete at present.

3. So far we have only discussed problems A, B, C and their reformulations
as optimal stopping problems. Now we want to address the methods of solution
of optimal stopping problems and their reduction to free-boundary problems.

There are essentially two equivalent approaches to finding a solution of the
optimal stopping problem. The first one deals with the problem

V∗ = sup
τ∈M

EGτ (24)
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in the case of infinite horizon, or the problem

V T
∗ = sup

τ∈MT

EGτ (25)

in the case of finite horizon, where M and MT are the classes of stopping times
defined in (20) and (22), respectively.

In this formulation it is important to realize that G = (Gt)t≥0 is an arbitrary
stochastic process defined on a filtered probability space (Ω,F , (Ft)t≥0, P) , where
it is assumed that G is adapted to the filtration (Ft)t≥0 which in turn makes
each τ from M or MT a stopping time. Since the method of solution to the
problems (24) and (25) is based on results from the theory of martingales, the
method itself is often referred to as the martingale method.

On the other hand, if we are to take a state space (E,B) large enough,
then one obtains the “Markov representation” Gt = G(Xt) for some measurable
function G , where X = (Xt)t≥0 is a Markov process with values in E . Moreover,
following the contemporary theory of Markov processes it is convenient to adopt
the definition of a Markov process X as the family of Markov processes

((Xt)t≥0, (Ft)t≥0, (Px)x∈E) (26)

where Px(X0 = x) = 1 , meaning that the process X starts at x under Px . Such
a point of view is convenient, for example, when dealing with the Kolmogorov
forward or backward equations, which presuppose that the process can start at
any point in the state space. Likewise, it is a profound attempt, developed in
stages, to study optimal stopping problems through functions of initial points in
the state space.

In this way we have arrived at the second approach which deals with the
problem

V (x) = sup
τ

ExG(Xτ ) (27)

where the supremum is taken over M or MT as above. Thus, if the Markov
representation of the initial problem is valid, we will refer to the Markovian method
of solution. Its elements will now be exposed in some detail.

Intuitively, it is clear in the Markovian setting that at time t the decision “to
stop” or “to continue” with the observation should depend only on the present
state Xt of the process and not on its past states Xs for 0 ≤ s < t . It is a
great simplification and advantage of the Markovian setting to the general one.
Indeed, in this case the problem of optimal stopping in essence becomes a problem
of optimal stopping for a random path in the state space E , as opposed to the
probability space Ω in the general case, while in many cases of interest we have
E = Rn for some n ≥ 1 . This point of view makes it also clear that many
Markovian problems of optimal stopping can be reformulated as problems for
elliptic or parabolic equations in Rn , because the transition density of a random
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path, for example in the case of a diffusion, satisfies the Kolmogorov equations.
The connection to elliptic and parabolic equations just addressed will be further
clarified by means of the strong Markov property in Chapter III.

4. To make the exposed facts more transparent, let us consider the optimal
stopping problem (3) in more detail. Denote

Xt = |x+Bt| (28)

for x ≥ 0 , and enable the maximum process to start at any point by setting

St = s ∨
(

max
0≤r≤t

Xr

)
(29)

for s ≥ x . The process S = (St)t≥0 is not Markov, but the pair (X, S) =
(Xt, St)t≥0 forms a Markov process with the state space E = { (x, s) ∈ R2 : 0 ≤
x ≤ s } . The value V∗ from (3) above coincides with the value function

V∗(x, s) = sup
τ

Ex,s

(
Sτ − cτ

)
(30)

when x = s = 0 . The problem thus needs to be solved in this more general form.

The general theory of optimal stopping for Markov processes makes it clear
that the optimal stopping time in (30) can be written in the form

τ∗ = inf { t ≥ 0 : (Xt, St) ∈ D∗} (31)

where D∗ is the stopping set, and C∗ = E \ D∗ is the continuation set. In other
words, if the observation of X was not stopped before time t since Xs ∈ C∗
for all 0 ≤ s < t , and we have that Xt ∈ D∗ , then it is optimal to stop the
observation at time t . On the other hand, if it happens that Xt ∈ C∗ as well,
then the observation of X should be continued.

Heuristic considerations about the shape of the sets C∗ and D∗ makes it
plausible to guess that there exist a point s∗ ≥ 0 and a continuous increasing
function s �→ g∗(s) with g∗(s∗) = 0 such that

D∗ = { (x, s) ∈ R2 : 0 ≤ x ≤ g∗(s) , s ≥ s∗ } (32)

(see Figure 1). Note that such a guess about the shape of the set D∗ can be
made using the following intuitive arguments. If the process (X, S) starts from a
point (x, s) with small x and large s , then it is reasonable to stop immediately,
because to increase the value s one needs a large time τ which in the formula (30)
appears with a minus sign. At the same time it is easy to see that if x is close
or equal to s , then it is reasonable to continue the observation, at least for small
time ∆ , because s will increase for the value

√
∆ while the cost for using this

time will be c∆ , and thus
√

∆ − c∆ > 0 if ∆ is small enough.
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x

s s=x

C*

D*
g(s)

,Xt St( )•

Figure 1: An illustration of the kinematics of the space-maximum process
(Xt, St)t≥0 in relation to the optimal stopping boundary g separating
the continuation set C∗ and the stopping set D∗ .

Such an a priori analysis of the shape of the boundary between the stopping
set C∗ and the continuation set D∗ is typical of the act of finding a solution to
the optimal stopping problem. The art of guessing in this context very often plays
a crucial role in solving the problem.

Having guessed that the stopping set D∗ in the optimal stopping prob-
lem (30) takes the form (32), it follows that τ∗ from (32) attains the supremum i.e.

V∗(x, s) = Ex,s

(
Sτ∗− cτ∗

)
(33)

for all (x, s) ∈ E . Denote by LX = (1/2) ∂2/∂x2 the infinitesimal operator of
the process X and consider V∗(x, s) as defined by the right-hand side of (33) for
(x, s) in the continuation set

C∗ = C1
∗ ∪ C2

∗ (34)

where the two subsets are defined as follows:

C1
∗ = { (x, s) ∈ R2 : 0 ≤ x ≤ s < s∗ }, (35)

C2
∗ = { (x, s) ∈ R2 : g∗(s) < x ≤ s , s ≥ s∗ }. (36)

By the strong Markov property one finds that V∗ solves the following equation:

LXV∗(x, s) = c (37)
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for (x, s) in C∗ . Note that if the process (X, S) starts at a point (x, s) with
x < s , then during a positive time interval the second component S of the process
does not change and remains equal to s . This explains why the infinitesimal
operator of the process (X, S) reduces to the infinitesimal operator of the process
X in the interior of C∗ . On the other hand, from the structure of the process
(X, S) it follows that at the diagonal in R2

+ the following condition of normal
reflection holds:

∂V∗
∂s

(x, s)
∣∣∣∣
x=s−

= 0. (38)

Moreover, it is clear that for (x, s) ∈ D∗ the following condition of instantaneous
stopping holds:

V∗(x, s) = s. (39)

Finally, either by guessing or providing rigorous arguments, it is found that at the
optimal boundary g∗ the condition of smooth fit holds

∂V∗
∂x

(x, s)
∣∣∣∣
x=g∗(s)+

= 0. (40)

The condition of smooth fit embodies the key principle of optimal stopping that
will be discussed extensively and used frequently in the sequel.

This analysis indicates that the value function V∗ and the optimal stopping
boundary g∗ can be obtained by searching for the pair of functions (V, g) solving
the following free-boundary problem:

LXV (x, s) = c for (x, s) in Cg, (41)
∂V

∂s
(x, s)

∣∣∣
x=s−

= 0 (normal reflection), (42)

V (x, s) = s for (x, s) in Dg (instantaneous stopping), (43)
∂V

∂x
(x, s)

∣∣∣
x=g(s)+

= 0 (smooth fit), (44)

where the two sets are defined as follows:

Cg = { (x, s) ∈ R2 : 0 ≤ x ≤ s < s0 or g(s) < x ≤ s for s ≥ s0 }, (45)

Dg = { (x, s) ∈ R2 : 0 ≤ x ≤ g(s) , s ≥ s0 } (46)

with g(s0) = 0 . It turns out that this system does not have a unique solution so
that an additional criterion is needed to make it unique in general (Chapter IV).

Let us briefly show how to solve the free-boundary problem (41)–(44) by
picking the right solution. For more details see Chapters IV and V.

From (41) one finds that for (x, s) in Cg we have

V (x, s) = cx2 + A(s) x + B(s) (47)
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where A and B are some functions of s . To determine A and B as well as g
we can use the three conditions (42)–(44) which yield

g′(s) =
1

2(s− g(s))
(48)

for s ≥ s0 . It is easily verified that the linear function

g(s) = s − 1
2c

(49)

solves (48). In this way a candidate for the optimal stopping boundary g∗ is
obtained.

For all (x, s) ∈ E with s ≥ 1/2c one can determine V (x, s) explicitly
using (47) and (49). This in particular gives that V (1/2c, 1/2c) = 3/4c . For other
points (x, s) ∈ E when s < 1/2c one can determine V (x, s) using that the
observation must be continued. In particular for x = s = 0 this yields that

V (0, 0) = V (1/2c, 1/2c)− c E0,0(σ) (50)

where σ is the first hitting time of the process (X, S) to the point (1/2c, 1/2c) .
Because E0,0(σ) = E0,0(X2

σ) = (1/2c)2 and V (1/2c, 1/2c) = 3/4c , we find that

V (0, 0) =
1
2c

(51)

as already indicated prior to (6) above. In this way a candidate for the value
function V∗ is obtained.

The key role in the proof of the fact that V = V∗ and g = g∗ is played by
Itô’s formula (stochastic calculus) and the optional sampling theorem (martingale
theory). This step forms a verification theorem that makes it clear that the solution
of the free-boundary problem coincides with the solution of the optimal stopping
problem.

5. The important point to be made in this context is that the verification
theorem is usually not difficult to prove in the cases when a candidate solution
to the free-boundary problem is obtained explicitly. This is quite typical for one-
dimensional problems with infinite horizon, or some simpler two-dimensional prob-
lems, as the one just discussed. In the case of problems with finite horizon, how-
ever, or other multidimensional problems, the situation can be radically different.
In these cases, in a manner quite opposite to the previous ones, the general results
of optimal stopping can be used to prove the existence of a solution to the free-
boundary problem, thus providing an alternative to analytic methods. Studies of
this type will be presented in Chapters VII and VIII.

6. From the material exposed above it is clear that our basic interest con-
cerns the case of continuous time. The theory of optimal stopping in the case
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of continuous time is considerably more complicated than in the case of discrete
time. However, since the former theory uses many basic ideas from the latter,
we have chosen to present the case of discrete time first, both in the martingale
and Markovian setting, which is then likewise followed by the case of continuous
time. The two theories form Chapter I. As the methods employed throughout
deal extensively with martingales and Markov processes, we have collected some
of the basic facts from these theories in Chapter II. In Chapters III and IV we
examine the relationship between optimal stopping problems and free-boundary
problems. Finally, in Chapters V–VIII we study a number of concrete optimal
stopping problems of general interest as discussed above.

Notes. To conclude the introduction we make a remark of general character
about the two approaches used in optimal stopping problems (martingale and
Markovian). Their similarities as well as distinction are mostly revealed by how
they describe probabilistic evolution of stochastic processes which underly the
optimal stopping problem.

To describe the probabilistic structure of a stochastic process in terms of
general theory one commonly chooses between the following two methods which
may naturally be thought of as unconditional and conditional.

In the first method one determines the probabilistic structure of a process
X = (Xt)t≥0 by its (unconditional) finite dimensional distributions which gen-
erate the corresponding probability distribution PX = Law(X) (on the space of
trajectories of X ). When speaking about optimal stopping of such processes we
refer to the martingale approach. This terminology is justified by the fact that
the appropriate techniques of solution are based on concepts and methods from
the theory of martingales (the most important of which is the concept of ‘Snell
envelope’ discussed in Chapter I below).

In the second method one does not begin with the finite-dimensional distri-
butions (which are rather complicated formations) but with a consistent family
of (conditional) transition functions taking into account the initial state x from
where the trajectories of X start. Having its origin in the 1931 paper by A. N. Kol-
mogorov “Analytical methods in the theory of probability” (see [111]) and leading
to the (Markovian) family of probability distributions PX

x = Law(X |X0 = x) ,
this approach proves to be very effective in optimal stopping problems due to
powerful analytic tools provided by the theory of Markov processes (Kolmogorov
forward and backward equations, theory of potential, stochastic differential equa-
tions, etc.). It is therefore natural to refer to this approach to optimal stopping
problems as the Markovian approach.

When solving concrete problems of optimal stopping one may use either of
the two approaches, and the choice certainly depends on special features of the
problem. When dealing with this issue, however, it should be kept in mind that: on
the one hand, any Markov process may be thought of as a special case of processes
determined by unconditional probabilities; on the other hand, every process may
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be considered as Markov by introducing a complex state space whose elements are
defined by the “past” of the underlying process.

In the present monograph we generally follow the Markovian approach since
it allows us to use the well-developed analytical apparatus arising from theory and
problems of differential (and integral) equations. Thus in the sequel we shall be
mostly interested in free-boundary problems (Stefan problems) which arise from
solving optimal stopping problems via the Markovian approach.



Chapter I.

Optimal stopping: General facts

The aim of the present chapter is to exhibit basic results of general theory of
optimal stopping. Both martingale and Markovian approaches are studied first in
discrete time and then in continuous time. The discrete time case, being direct
and intuitively clear, provides a number of important insights into the continuous
time case.

1. Discrete time

The aim of the present section is to exhibit basic results of optimal stopping in
the case of discrete time. We first consider a martingale approach. This is then
followed by a Markovian approach.

1.1. Martingale approach

1. Let G = (Gn)n≥0 be a sequence of random variables defined on a filtered
probability space (Ω,F , (Fn)n≥0, P) . We interpret Gn as the gain obtained if
the observation of G is stopped at time n . It is assumed that G is adapted
to the filtration (Fn)n≥0 in the sense that each Gn is Fn -measurable. Recall
that each Fn is a σ -algebra of subsets of Ω such that F0 ⊂ F1 ⊂ · · · ⊂ F .
Typically (Fn)n≥0 coincides with the natural filtration (FG

n )n≥0 but generally
may also be larger. We interpret Fn as the information available up to time n .
All our decisions in regard to optimal stopping at time n must be based on this
information only (no anticipation is allowed).

The following definition formalizes the previous requirement and plays a key
role in the study of optimal stopping.

Definition 1.1. A random variable τ : Ω → {0, 1, . . . ,∞} is called a Markov time
if { τ ≤ n } ∈ Fn for all n ≥ 0 . A Markov time is called a stopping time if τ < ∞
P-a.s.
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The family of all stopping times will be denoted by M , and the family of
all Markov times will be denoted by M̄ . The following subfamilies of M will be
used in the present chapter:

MN
n = { τ ∈ M : n ≤ τ ≤ N } (1.1.1)

where 0 ≤ n ≤ N . For simplicity we will set MN = MN
0 and Mn = M∞

n .

The optimal stopping problem to be studied seeks to solve

V∗ = sup
τ

EGτ (1.1.2)

where the supremum is taken over a family of stopping times. Note that (1.1.2)
involves two tasks: (i) to compute the value function V∗ as explicitly as possible;
(ii) to exhibit an optimal stopping time τ∗ at which the supremum is attained.

To ensure the existence of EGτ in (1.1.2) we need to impose additional
conditions on G and τ . If the following condition is satisfied (with GN ≡ 0
when N = ∞ ):

E
(

sup
n≤k≤N

|Gk|
)

< ∞ (1.1.3)

then EGτ is well defined for all τ ∈ MN
n . Although for many results below it is

possible to go beyond this condition and replace |Gk| above by G−
k or G+

k (or
even consider only those τ for which EGτ is well defined) we will for simplicity
assume throughout that (1.1.3) is satisfied. A more careful inspection of the proofs
will easily reveal how the condition (1.1.3) can be relaxed.

With the subfamilies of stopping times MN
n introduced in (1.1.1) above we

will associate the following value functions:

V N
n = sup

τ∈MN
n

EGτ (1.1.4)

where 0 ≤ n ≤ N . Again, for simplicity, we will set V N = V N
0 and Vn = V ∞

n .
Likewise, we will set V = V ∞

0 when the supremum is taken over all τ in M .
The main purpose of the present subsection is to study the optimal stopping
problem (1.1.4) using a martingale approach.

Sometimes it is also of interest to admit that τ in (1.1.2) takes the value ∞
with positive probability, so that τ belongs to M̄ . In such a case we need to make
an agreement about the value of Gτ on {τ = ∞} . Clearly, if limn→∞ Gn exists,
then G∞ is naturally set to take this value. Another possibility is to let G∞ take
an arbitrary but fixed value. Finally, for certain reasons of convenience, it is useful
to set G∞ = lim supn→∞ Gn . In general, however, none of these choices is better
than the others, and a preferred choice should always be governed by the meaning
of a specific problem studied.
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2. The method of backward induction. The first method for solving the prob-
lem (1.1.4) when N <∞ uses backward induction first to construct a sequence
of random variables (SN

n )0≤n≤N that solves the problem in a stochastic sense.
Taking expectation then solves the problem in the original mean-valued sense.

Consider the optimal stopping problem (1.1.4) when N < ∞ . Recall that
(1.1.4) reads more explicitly as follows:

V N
n = sup

n≤τ≤N
EGτ (1.1.5)

where τ is a stopping time and 0 ≤ n ≤ N . To solve the problem we can let the
time go backward and proceed recursively as follows.

For n = N we have to stop immediately and our gain SN
N equals GN .

For n = N − 1 we can either stop or continue. If we stop our gain SN
N−1 will

be equal to GN−1 , and if we continue optimally our gain SN
N−1 will be equal

to E (SN
N | FN−1) . The latter conclusion reflects the fact that our decision about

stopping or continuation at time n = N − 1 must be based on the information
contained in FN−1 only. It follows that if GN−1 ≥ E (SN

N | FN−1) then we need
to stop at time n = N −1 , and if GN−1 < E (SN

N | FN−1) then we need to con-
tinue at time n = N −1 . For n = N −2, . . . , 0 the considerations are continued
analogously.

The method of backward induction just explained leads to a sequence of
random variables (SN

n )0≤n≤N defined recursively as follows:

SN
n = GN for n = N, (1.1.6)

SN
n = max

(
Gn, E (SN

n+1 | Fn)
)

for n = N −1, . . . , 0. (1.1.7)

The method also suggests that we consider the following stopping time:

τN
n = inf { n ≤ k ≤ N : SN

k = Gk } (1.1.8)

for 0 ≤ n ≤ N . Note that the infimum in (1.1.8) is always attained.

The first part of the following theorem shows that SN
n and τN

n solve the
problem in a stochastic sense. The second part of the theorem shows that this
leads to a solution of the initial problem (1.1.5). The third part of the theorem
provides a supermartingale characterization of the solution. The method of back-
ward induction and the results presented in the theorem play a central role in the
theory of optimal stopping.

Theorem 1.2. (Finite horizon) Consider the optimal stopping problem (1.1.5) upon
assuming that the condition (1.1.3) holds. Then for all 0 ≤ n ≤ N we have:

SN
n ≥ E (Gτ | Fn) for each τ ∈ MN

n , (1.1.9)

SN
n = E (GτN

n
| Fn). (1.1.10)
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Moreover, if 0 ≤ n ≤ N is given and fixed, then we have:

The stopping time τN
n is optimal in (1.1.5). (1.1.11)

If τ∗ is an optimal stopping time in (1.1.5) then τN
n ≤ τ∗ P-a.s. (1.1.12)

The sequence (SN
k )n≤k≤N is the smallest supermartingale which dom-

inates (Gk)n≤k≤N .
(1.1.13)

The stopped sequence (SN
k∧τN

n
)n≤k≤N is a martingale. (1.1.14)

Proof. (1.1.9)–(1.1.10): The proof will be carried out by induction over n = N,
N − 1, . . . , 0 . Note that both relations are trivially satisfied when n = N due
to (1.1.6) above. Let us thus assume that (1.1.9) and (1.1.10) hold for n =
N, N − 1, . . . , k where k ≥ 1 , and let us show that (1.1.9) and (1.1.10) must
then also hold for n = k − 1 .

(1.1.9): Take τ ∈ MN
k−1 and set τ̄ = τ ∨ k . Then τ̄ ∈ MN

k and since
{τ ≥k} ∈ Fk−1 it follows that

E (Gτ | Fk−1) = E
(
I(τ = k−1) Gk−1 | Fk−1

)
+ E

(
I(τ ≥k) Gτ̄ | Fk−1

)
(1.1.15)

= I(τ = k−1) Gk−1 + I(τ ≥k) E
(
E (Gτ̄ | Fk) | Fk−1

)
.

By the induction hypothesis the inequality (1.1.9) holds for n = k . Since τ̄ ∈
MN

k this implies that E (Gτ̄ | Fk) ≤ SN
k . On the other hand, from (1.1.7) we

see that Gk−1 ≤ SN
k−1 and E (SN

k | Fk−1) ≤ SN
k−1 . Applying the preceding three

inequalities to the right-hand side of (1.1.15) we get

E (Gτ | Fk−1) ≤ I(τ = k−1)SN
k−1 + I(τ ≥k) E (SN

k | Fk−1) (1.1.16)

≤ I(τ = k−1) SN
k−1 + I(τ ≥k) SN

k−1 = SN
k−1.

This shows that (1.1.9) holds for n = k − 1 as claimed.

(1.1.10): To prove that (1.1.10) holds for n = k − 1 it is enough to check
that all inequalities in (1.1.15) and (1.1.16) remain equalities when τ = τN

k−1 . For
this, note from (1.1.8) that τN

k−1 = τN
k on {τN

k−1 ≥ k} , so that from (1.1.15) with
τ = τN

k−1 and the induction hypothesis (1.1.10) for n = k , we get

E (GτN
k−1

| Fk−1) = I(τN
k−1 = k − 1) Gk−1 (1.1.17)

+ I(τN
k−1≥k) E

(
E (GτN

k
| Fk) | Fk−1

)
= I(τN

k−1 = k−1) Gk−1 + I(τN
k−1≥k) E (SN

k | Fk−1)

= I(τN
k−1 = k−1) SN

k−1 + I(τN
k−1≥k) SN

k−1 = SN
k−1

where in the second last equality we use that Gk−1 = SN
k−1 on { τN

k−1 = k− 1 }
by (1.1.8) as well as that E (SN

k | Fk−1) = SN
k−1 on { τN

k−1 ≥ k } by (1.1.8) and
(1.1.7). This shows that (1.1.10) holds for n = k − 1 as claimed.
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(1.1.11): Taking E in (1.1.9) we find that ESN
n ≥ EGτ for all τ ∈ MN

n and
hence by taking the supremum over all τ ∈ MN

n we see that ESN
n ≥ V N

n . On the
other hand, taking the expectation in (1.1.10) we get ESN

n = EGτN
n

which shows
that ESN

n ≤ V N
n . The two inequalities give the equality V N

n = ESN
n , and since

ESN
n = EGτN

n
, we see that V N

n = EGτN
n

implying the claim.

(1.1.12): We claim that the optimality of τ∗ implies that SN
τ∗ = Gτ∗ P-a.s.

Indeed, if this would not be the case, then using that SN
k ≥ Gk for all n ≤ k ≤ N

by (1.1.6)–(1.1.7), we see that SN
τ∗ ≥ Gτ∗ with P(SN

τ∗ > Gτ∗) > 0 . It thus
follows that EGτ∗ < ESN

τ∗ ≤ ESN
n = V N

n where the second inequality follows
by the optional sampling theorem (page 60) and the supermartingale property of
(SN

k )n≤k≤N established in (1.1.13) below, while the final equality follows from the
proof of (1.1.11) above. The strict inequality, however, contradicts the fact that
τ∗ is optimal. Hence SN

τ∗ = Gτ∗ P-a.s. as claimed and the fact that τN
n ≤ τ∗

P-a.s. follows from the definition (1.1.8).

(1.1.13): From (1.1.7) it follows that

SN
k ≥ E (SN

k+1 | Fk) (1.1.18)

for all n≤k≤N −1 showing that (SN
k )n≤k≤N is a supermartingale. From (1.1.6)

and (1.1.7) it follows that SN
k ≥ Gk P-a.s. for all n ≤ k ≤ N meaning that

(SN
k )n≤k≤N dominates (Gk)n≤k≤N . Moreover, if (S̃k)n≤k≤N is another super-

martingale which dominates (Gk)n≤k≤N , then the claim that S̃k ≥ SN
k P-a.s.

can be verified by induction over k = N, N −1, . . . , l . Indeed, if k = N then the
claim follows by (1.1.6). Assuming that S̃k ≥ SN

k P-a.s. for k = N, N −1, . . . , l
with l ≥ n + 1 it follows by (1.1.7) that SN

l−1 = max(Gl−1, E (SN
l | Fl−1)) ≤

max(Gl−1, E (S̃l | Fl−1)) ≤ S̃l−1 P-a.s. using the supermartingale property of
(S̃k)n≤k≤N and proving the claim.

(1.1.14): To verify the martingale property

E
(
SN

(k+1)∧τN
n

| Fk

)
= SN

k∧τN
n

(1.1.19)

with n ≤ k ≤ N − 1 given and fixed, note that

E
(
SN

(k+1)∧τN
n

| Fk

)
(1.1.20)

= E
(
I(τN

n ≤ k) SN
k∧τN

n
| Fk

)
+ E

(
I(τN

n ≥ k+1) SN
k+1 | Fk

)
= I(τN

n ≤ k) SN
k∧τN

n
+ I(τN

n ≥ k+1) E (SN
k+1 | Fk)

= I(τN
n ≤ k) SN

k∧τN
n

+ I(τN
n ≥ k+1) SN

k = SN
k∧τN

n

where the second last equality follows from the fact that SN
k = E (SN

k+1 | Fk) on
{ τN

n ≥ k + 1 } , while { τN
n ≥ k + 1 } ∈ Fk since τN

n is a stopping time. This
establishes (1.1.19) and the proof of the theorem is complete. �
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Note that (1.1.9) can also be derived from the supermartingale property
(1.1.13), and that (1.1.10) can also be derived from the martingale property
(1.1.14), both by means of the optional sampling theorem (page 60).

It follows from Theorem 1.2 that the optimal stopping problem V N
0 is solved

inductively by solving the problems V N
n for n = N, N − 1, . . . , 0 . Moreover, the

optimal stopping rule τN
n for V N

n satisfies τN
n = τN

k on {τN
n ≥k} for 0 ≤ n ≤

k ≤ N where τN
k is the optimal stopping rule for V N

k . This, in other words,
means that if it was not optimal to stop within the time set {n, n+1, . . . , k− 1}
then the same optimality rule applies in the time set {k, k+1, . . . , N} . In parti-
cular, when specialized to the problem V N

0 , the following general principle is
obtained: If the stopping rule τN

0 is optimal for V N
0 and it was not optimal to

stop within the time set {0, 1, . . . , n−1} , then starting the observation at time
n and being based on the information Fn , the same stopping rule is still optimal
for the problem V N

n . This principle of solution for optimal stopping problems
has led to the general principle of dynamic programming in the theory of optimal
stochastic control (often referred to as Bellman’s principle).

3. The method of essential supremum. The method of backward induction
by its nature requires that the horizon N be finite so that the case of infinite
horizon N remains uncovered. It turns out, however, that the random variables
SN

n defined by the recurrent relations (1.1.6)–(1.1.7) above admit a different char-
acterization which can be directly extended to the case of infinite horizon N . This
characterization forms the basis for the second method that will now be presented.

With this aim note that (1.1.9) and (1.1.10) in Theorem 1.2 above suggest
that the following identity should hold:

SN
n = sup

τ∈MN
n

E (Gτ | Fn

)
. (1.1.21)

A difficulty arises, however, from the fact that both (1.1.9) and (1.1.10) hold only
P-a.s. so that the exceptional P -null set may depend on the given τ ∈ MN

n . Thus,
if the supremum in (1.1.21) is taken over uncountably many τ , then the right-
hand side need not define a measurable function, and the identity (1.1.21) may
fail as well. To overcome this difficulty it turns out that the concept of essential
supremum proves useful.

Lemma 1.3. (Essential supremum) Let {Zα : α ∈ I } be a family of random
variables defined on (Ω,G, P) where the index set I can be arbitrary. Then there
exists a countable subset J of I such that the random variable Z∗ : Ω → R̄

defined by

Z∗ = sup
α∈J

Zα (1.1.22)



Section 1. Discrete time 7

satisfies the following two properties :

P(Zα≤Z∗) = 1 for each α ∈ I. (1.1.23)

If Z̃ : Ω → R̄ is another random variable satisfying (1.1.23) in
place of Z∗, then P(Z∗≤ Z̃) = 1.

(1.1.24)

The random variable Z∗ is called the essential supremum of { Zα : α∈ I }
relative to P and is denoted by Z∗ = esssupα∈I Zα . It is determined by the
properties (1.1.23) and (1.1.24) uniquely up to a P -null set.

Moreover, if the family {Zα : α∈I} is upwards directed in the sense that

For any α and β in I there exists γ in I such that
Zα ∨ Zβ ≤ Zγ P-a.s.

(1.1.25)

then the countable set J = {αn : n≥1 } can be chosen so that

Z∗ = lim
n→∞Zαn P-a.s. (1.1.26)

where Zα1 ≤ Zα2 ≤ · · · P-a.s.

Proof. Since x �→ (2/π) arctan(x) is a strictly increasing function from R̄ to
[−1, 1] , it is no restriction to assume that |Zα| ≤ 1 for all α ∈ I . Otherwise,
replace Zα by (2/π) arctan(Zα) for α ∈ I and proceed as in the rest of the
proof.

Let C denote the family of all countable subsets C of I . Choose an increas-
ing sequence { Cn : n ≥ 1 } in C such that

a = sup
C∈C

E
(

sup
α∈C

Zα

)
= sup

n≥1
E
(

sup
α∈Cn

Zα

)
. (1.1.27)

Then J :=
⋃∞

n=1 Cn is a countable subset of I and we claim that Z∗ defined
by (1.1.22) satisfies (1.1.23) and (1.1.24).

To verify these claims take α ∈ I arbitrarily and note the following. If α ∈ J
then Zα ≤ Z∗ so that (1.1.23) holds. On the other hand, if α /∈ J and we assume
that P(Zα > Z∗) > 0 , then a < E (Z∗ ∨ Zα) ≤ a since a = EZ∗ ∈ [−1, 1]
(by the monotone convergence theorem) and J ∪ {α} belongs to C . As the strict
inequality is clearly impossible, we see that (1.1.23) holds for all α ∈ I as claimed.
Moreover, it is obvious that (1.1.24) follows from (1.1.22) and (1.1.23) since J is
countable.

Finally, if (1.1.25) is satisfied then the initial countable set J = {α0
1, α

0
2, . . .}

can be replaced by a new countable set J = {α1, α2, . . . } if we initially set
α1 = α0

1 , and then inductively choose αn+1 ≥ αn ∨ α0
n+1 for n ≥ 1 , where

γ ≥ α ∨ β corresponds to Zα , Zβ and Zγ such that Zγ ≥ Zα ∨ Zβ P-a.s.
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The concluding claim in (1.1.26) is then obvious, and the proof of the lemma is
complete. �

With the concept of essential supremum we may now rewrite (1.1.9) and
(1.1.10) in Theorem 1.2 above as follows:

SN
n = esssup

n≤τ≤N
E (Gτ | Fn) (1.1.28)

for all 0 ≤ n ≤ N . This identity provides an additional characterization of the
sequence of random variables (SN

n )0≤n≤N introduced initially by means of the
recurrent relations (1.1.6)–(1.1.7). Its advantage in comparison with the recurrent
relations lies in the fact that the identity (1.1.28) can naturally be extended to
the case of infinite horizon N . This programme will now be described.

Consider the optimal stopping problem (1.1.4) when N = ∞ . Recall that
(1.1.4) reads more explicitly as follows:

Vn = sup
τ≥n

EGτ (1.1.29)

where τ is a stopping time and n ≥ 0 . To solve the problem we will consider the
sequence of random variables (Sn)n≥0 defined as follows:

Sn = esssup
τ≥n

E (Gτ | Fn) (1.1.30)

as well as the following stopping time:

τn = inf { k ≥ n : Sk = Gk} (1.1.31)

for n ≥ 0 where inf ∅ = ∞ by definition. The sequence (Sn)n≥0 is often referred
to as the Snell envelope of G .

The first part of the following theorem shows that (Sn)n≥0 satisfies the same
recurrent relations as (SN

n )0≤n≤N . The second part of the theorem shows that
Sn and τn solve the problem in a stochastic sense. The third part of the theorem
shows that this leads to a solution of the initial problem (1.1.29). The fourth part
of the theorem provides a supermartingale characterization of the solution.

Theorem 1.4. (Infinite horizon) Consider the optimal stopping problem (1.1.29)
upon assuming that the condition (1.1.3) holds. Then the following recurrent rela-
tions hold:

Sn = max
(
Gn, E (Sn+1 | Fn)

)
(1.1.32)

for all n ≥ 0 . Assume moreover when required below that

P(τn <∞) = 1 (1.1.33)
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where n ≥ 0 . Then for all n ≥ 0 we have:

Sn ≥ E (Gτ | Fn) for each τ ∈ Mn, (1.1.34)
Sn = E (Gτn | Fn). (1.1.35)

Moreover, if n ≥ 0 is given and fixed, then we have:

The stopping time τn is optimal in (1.1.29). (1.1.36)
If τ∗ is an optimal stopping time in (1.1.29) then τn ≤ τ∗ P-a.s. (1.1.37)
The sequence (Sk)k≥n is the smallest supermartingale which
dominates (Gk)k≥n.

(1.1.38)

The stopped sequence (Sk∧τn)k≥n is a martingale. (1.1.39)

Finally, if the condition (1.1.33) fails so that P(τn = ∞) > 0 , then there is no
optimal stopping time (with probability 1) in (1.1.29).

Proof. (1.1.32): Let us first show that the left-hand side is smaller than the right-
hand side when n ≥ 0 is given and fixed.

For this, take τ ∈ Mn and set τ̄ = τ ∨ (n + 1) . Then τ̄ ∈ Mn+1 and since
{ τ ≥ n+1 } ∈ Fn we have

E (Gτ | Fn) = E
(
I(τ = n)Gn | Fn

)
+ E

(
I(τ ≥ n+1)Gτ̄ | Fn

)
(1.1.40)

= I(τ = n) Gn + I(τ ≥ n+1) E (Gτ̄ | Fn)

= I(τ = n) Gn + I(τ ≥ n+1) E
(
E (Gτ̄ | Fn+1) | Fn)

≤ I(τ = n) Gn + I(τ ≥ n+1) E (Sn+1 | Fn)

≤ max
(
Gn, E (Sn+1 | Fn)

)
.

From this inequality it follows that

esssup
τ≥n

E (Gτ | Fn) ≤ max
(
Gn, E (Sn+1 | Fn)

)
(1.1.41)

which is the desired inequality.

To prove the reverse inequality, let us first note that Sn ≥ Gn P-a.s. by the
definition of Sn so that it is enough to show that

Sn ≥ E (Sn+1 | Fn) (1.1.42)

which is the supermartingale property of (Sn)n≥0 . To verify this inequality, let us
first show that the family {E (Gτ | Fn+1) : τ ∈ Mn+1 } is upwards directed in the
sense that (1.1.25) is satisfied. For this, note that if σ1 and σ2 are from Mn+1

and we set σ3 = σ1IA + σ2IAc where A = {E (Gσ1 | Fn+1) ≥ E (Gσ2 | Fn+1) } ,
then σ3 belongs to Mn+1 and we have

E (Gσ3 | Fn+1) = E (Gσ1IA+ Gσ2IAc | Fn+1) (1.1.43)

= IA E (Gσ1 | Fn+1) + IAc E (Gσ2 | Fn+1)

= E (Gσ1 | Fn+1) ∨ E (Gσ2 | Fn+1)
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implying (1.1.25) as claimed. Hence by (1.1.26) there exists a sequence {σk : k ≥ 1}
in Mn+1 such that

esssup
τ≥n+1

E (Gτ | Fn+1) = lim
k→∞

E (Gσk
| Fn+1) (1.1.44)

where E (Gσ1 | Fn+1) ≤ E (Gσ2 | Fn+1) ≤ · · · P-a.s. Since the left-hand side
in (1.1.44) equals Sn+1 , by the conditional monotone convergence theorem we
get

E (Sn+1 | Fn) = E
(

lim
k→∞

E (Gσk
| Fn+1) | Fn

)
(1.1.45)

= lim
k→∞

E
(
E (Gσk

| Fn+1) | Fn

)
= lim

k→∞
E (Gσk

| Fn) ≤ Sn

where the final inequality follows from the definition of Sn . This establishes
(1.1.42) and the proof of (1.1.32) is complete.

(1.1.34): This inequality follows directly from the definition (1.1.30).

(1.1.35): The proof of (1.1.39) below shows that the stopped sequence
(Sk∧τn)k≥n is a martingale. Moreover, setting G∗

n = supk≥n |Gk| we have

|Sk| ≤ esssup
τ≥k

E
( |Gτ | | Fk

) ≤ E (G∗
n | Fk) (1.1.46)

for all k ≥ n . Since G∗
n is integrable due to (1.1.3), it follows from (1.1.46) that

(Sk)k≥n is uniformly integrable. Thus the optional sampling theorem (page 60)
can be applied to the martingale (Mk)k≥n = (Sk∧τn)k≥n and the stopping time
τn yielding

Mn = E (Mτn | Fn). (1.1.47)

Since Mn = Sn and Mτn = Sτn we see that (1.1.47) is the same as (1.1.35).

(1.1.36): This is proved using (1.1.34) and (1.1.35) in exactly the same way
as (1.1.11) above using (1.1.9) and (1.1.10).

(1.1.37): This is proved in exactly the same way as (1.1.12) above.

(1.1.38): It was shown in (1.1.42) that (Sk)k≥n is a supermartingale. More-
over, it follows from (1.1.30) that Sk ≥ Gk P-a.s. for all k ≥ n meaning
that (Sk)k≥n dominates (Gk)k≥n . Finally, if (S̃k)k≥n is another supermartingale
which dominates (Gk)k≥n , then by (1.1.35) we find

Sk = E (Gτk
| Fk) ≤ E (S̃τk

| Fk) ≤ S̃k (1.1.48)

for all k ≥ n where the final inequality follows by the optional sampling theo-
rem (page 60) being applicable since S̃−

k ≤ G−
k ≤ G∗

n for all k ≥ n with G∗
n

integrable.
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(1.1.39): This is proved in exactly the same way as (1.1.14) above.

Finally, note that the final claim follows directly from (1.1.37). This completes
the proof of the theorem. �

4. In the last part of this subsection we will briefly explore a connection
between the two methods above when the horizon N tends to infinity in the
former.

For this, note from (1.1.28) that N �→ SN
n and N �→ τN

n are increasing, so
that

S∞
n = lim

N→∞
SN

n and τ∞
n = lim

N→∞
τN
n (1.1.49)

exist P-a.s. for each n ≥ 0 . Note also from (1.1.5) that N �→ V N
n is increasing,

so that
V ∞

n = lim
N→∞

V N
n (1.1.50)

exists for each n ≥ 0 . From (1.1.28) and (1.1.30) we see that

S∞
n ≤ Sn and τ∞

n ≤ τn (1.1.51)

P-a.s. for each n ≥ 0 . Similarly, from (1.1.10) and (1.1.35) we find that

V ∞
n ≤ Vn (1.1.52)

for each n ≥ 0 . The following simple example shows that in the absence of the
condition (1.1.3) above the inequalities in (1.1.51) and (1.1.52) can be strict.

Example 1.5. Let Gn =
∑n

k=0 εk for n ≥ 0 where (εk)k≥0 is a sequence of
independent and identically distributed random variables with P(εk = −1) =
P(εk = 1) = 1/2 for k ≥ 0 . Setting Fn = σ(ε1, . . . , εn) for n ≥ 0 it follows
that (Gn)n≥0 is a martingale with respect to (Fn)n≥0 . From (1.1.28) using the
optional sampling theorem (page 60) one sees that SN

n = Gn and hence τN
n = n

as well as V N
n = 0 for all 0 ≤ n ≤ N . On the other hand, if we make use of the

stopping times σm = inf { k ≥ n : Gk = m } upon recalling that P(σm < ∞) = 1
whenever m ≥ 1 , it follows by (1.1.30) that Sn ≥ m P-a.s. for all m ≥ 1 . From
this one sees that Sn = ∞ P-a.s. and hence τn = ∞ P-a.s. as well as Vn = ∞
for all n ≥ 0 . Thus, in this case, all inequalities in (1.1.51) and (1.1.52) are strict.

Theorem 1.6. (From finite to infinite horizon) Consider the optimal stopping prob-
lems (1.1.5) and (1.1.29) upon assuming that the condition (1.1.3) holds. Then
equalities in (1.1.51) and (1.1.52) hold for all n ≥ 0 .

Proof. Letting N → ∞ in (1.1.7) and using the conditional monotone convergence
theorem one finds that the following recurrent relations hold:

S∞
n = max

(
Gn, E (S∞

n+1 | Fn)
)

(1.1.53)
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for all n ≥ 0 . In particular, it follows that (S∞
n )n≥0 is a supermartingale. Since

S∞
n ≥ Gn P-a.s. we see that (S∞

n )− ≤ G−
n ≤ supn≥0 G−

n P-a.s. for all n ≥ 0
from where by means of (1.1.3) we see that ((S∞

n )−)n≥0 is uniformly integrable.
Thus by the optional sampling theorem (page 60) we get

S∞
n ≥ E (S∞

τ | Fn) (1.1.54)

for all τ ∈ Mn . Moreover, since S∞
k ≥ Gk P-a.s. for all k ≥ n , it follows that

S∞
τ ≥ Gτ P-a.s. for all τ ∈ Mn , and hence

E (S∞
τ | Fn) ≥ E (Gτ | Fn) (1.1.55)

for all τ ∈ Mn . Combining (1.1.54) and (1.1.55) we see by (1.1.30) that S∞
n ≥

Sn P-a.s. for all n ≥ 0 . Since the reverse inequality holds in general as shown
in (1.1.51) above, this establishes that S∞

n = Sn P-a.s. for all n ≥ 0 . From
this it also follows that τ∞

n = τn P-a.s. for all n ≥ 0 . Finally, the third identity
V ∞

n = Vn follows by the monotone convergence theorem. The proof of the theorem
is complete. �

1.2. Markovian approach

In this subsection we will present basic results of optimal stopping when the time
is discrete and the process is Markovian. (Basic definitions and properties of such
processes are given in Subsections 4.1 and 4.2.)

1. Throughout we consider a time-homogeneous Markov chain X = (Xn)n≥0

defined on a filtered probability space (Ω,F , (Fn)n≥0, Px) and taking values in
a measurable space (E,B) where for simplicity we assume that E = Rd for
some d ≥ 1 and B = B(Rd) is the Borel σ -algebra on Rd . It is assumed
that the chain X starts at x under Px for x ∈ E . It is also assumed that
the mapping x �→ Px(F ) is measurable for each F ∈ F . It follows that the
mapping x �→ Ex(Z) is measurable for each random variable Z . Finally, without
loss of generality we assume that (Ω,F) equals the canonical space (EN0 ,BN0)
so that the shift operator θn : Ω → Ω is well defined by θn(ω)(k) = ω(n+k) for
ω = (ω(k))k≥0 ∈ Ω and n, k ≥ 0 . (Recall that N0 stands for N ∪ {0} .)

2. Given a measurable function G : E → R satisfying the following condition
(with G(XN ) = 0 if N = ∞ ):

Ex

(
sup

0≤n≤N
|G(Xn)|

)
< ∞ (1.2.1)

for all x ∈ E , we consider the optimal stopping problem

V N (x) = sup
0≤τ≤N

ExG(Xτ ) (1.2.2)
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where x ∈ E and the supremum is taken over all stopping times τ of X . The
latter means that τ is a stopping time with respect to the natural filtration of X
given by FX

n = σ(Xk : 0 ≤ k ≤ n) for n ≥ 0 . Since the same results remain
valid if we take the supremum in (1.2.2) over stopping times τ with respect to
(Fn)n≥0 , and this assumption makes final conclusions more powerful (at least
formally), we will assume in the sequel that the supremum in (1.2.2) is taken over
this larger class of stopping times. Note also that in (1.2.2) we admit that N can
be +∞ as well. In this case, however, we still assume that the supremum is taken
over stopping times τ , i.e. over Markov times τ satisfying τ <∞ P-a.s. In this
way any specification of G(X∞) becomes irrelevant for the problem (1.2.2).

3. To solve the problem (1.2.2) in the case when N < ∞ we may note that
by setting

Gn = G(Xn) (1.2.3)

for n ≥ 0 the problem (1.2.2) reduces to the problem (1.1.5) where instead of P
and E we have Px and Ex for x ∈ E . Introducing the expectation in (1.2.2)
with respect to Px under which X0 = x and studying the resulting problem by
means of the mapping x �→ V N (x) for x ∈ E constitutes a profound step which
most directly aims to exploit the Markovian structure of the problem. (The same
remark applies in the theory of optimal stochastic control in contrast to classical
methods developed in calculus of variations.)

Having identified the problem (1.2.2) as the problem (1.1.5) we can apply
the method of backward induction (1.1.6)–(1.1.7) which leads to a sequence of
random variables (SN

n )0≤n≤N and a stopping time τN
n defined in (1.1.8). The

key identity is
SN

n = V N−n(Xn) (1.2.4)

for 0 ≤ n ≤ N . This will be established in the proof of the next theorem. Once
(1.2.4) is known to hold, the results of Theorem 1.2 translate immediately into
the present setting and get a more transparent form as follows.

In the sequel we set

Cn = { x ∈ E : V N−n(x) > G(x) }, (1.2.5)

Dn = { x ∈ E : V N−n(x) = G(x) } (1.2.6)

for 0 ≤ n ≤ N . We define

τD = inf { 0 ≤ n ≤ N : Xn ∈ Dn }. (1.2.7)

Finally, the transition operator T of X is defined by

TF (x) = ExF (X1) (1.2.8)

for x ∈ E whenever F : E → R is a measurable function so that F (X1) is
integrable with respect to Px for all x ∈ E .
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Theorem 1.7. (Finite horizon: The time-homogeneous case) Consider the optimal
stopping problem (1.2.2) upon assuming that the condition (1.2.1) holds. Then the
value function V n satisfies the Wald–Bellman equations

V n(x) = max(G(x), TV n−1(x)) (x ∈ E) (1.2.9)

for n = 1, . . . , N where V 0 = G . Moreover, we have:

The stopping time τD is optimal in (1.2.2). (1.2.10)
If τ∗ is an optimal stopping time in (1.2.2) then τD ≤ τ∗ Px-a.s.
for every x ∈ E.

(1.2.11)

The sequence (V N−n(Xn))0≤n≤N is the smallest supermartingale
which dominates (G(Xn))0≤n≤N under Px for x ∈ E given and fixed.

(1.2.12)

The stopped sequence (V N−n∧τD(Xn∧τD ))0≤n≤N is a martingale
under Px for every x ∈ E.

(1.2.13)

Proof. To verify (1.2.4) recall from (1.1.10) that

SN
n = Ex

(
G(XτN

n
) | Fn

)
(1.2.14)

for 0 ≤ n ≤ N . Since SN−n
k ◦ θn = SN

n+k we get that τN
n satisfies

τN
n = inf {n ≤ k ≤ N : SN

k = G(Xk) } = n + τN−n
0 ◦ θn (1.2.15)

for 0 ≤ n ≤ N . Inserting (1.2.15) into (1.2.14) and using the Markov property we
obtain

SN
n = Ex

(
G(Xn+τN−n

0 ◦θn
) | Fn

)
= Ex

(
G(XτN−n

0
) ◦ θn | Fn

)
(1.2.16)

= EXnG(XτN−n
0

) = V N−n(Xn)

where the final equality follows by (1.1.9)–(1.1.10) which imply

ExSN−n
0 = ExG(XτN−n

0
) = sup

0≤τ≤N−n
ExG(Xτ ) = V N−n(x) (1.2.17)

for 0 ≤ n ≤ N and x ∈ E . Thus (1.2.4) holds as claimed.

To verify (1.2.9) note that (1.1.7) using (1.2.4) and the Markov property
reads as follows:

V N−n(Xn) = max
(
G(Xn), Ex

(
V N−n−1(Xn+1) | Fn

))
(1.2.18)

= max
(
G(Xn), Ex

(
V N−n−1(X1) ◦ θn | Fn

))
= max

(
G(Xn), EXn

(
V N−n−1(X1)

))
= max

(
G(Xn), TV N−n−1(Xn)

)
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for all 0 ≤ n ≤ N . Letting n = 0 and using that X0 = x under Px we see that
(1.2.18) yields (1.2.9).

The remaining statements of the theorem follow directly from Theorem 1.2
above. The proof is complete. �

4. The Wald–Bellman equations (1.2.9) can be written in a more compact
form as follows. Introduce the operator Q by setting

QF (x) = max(G(x), TF (x)) (1.2.19)

for x ∈ E where F : E → R is a measurable function for which F (X1) ∈ L1(Px)
for x ∈ E . Then (1.2.9) reads as follows:

V n(x) = QnG(x) (1.2.20)

for 1 ≤ n ≤ N where Qn denotes the n -th power of Q . The recursive relations
(1.2.20) form a constructive method for finding V N when Law(X1 | Px) is known
for x ∈ E .

5. Let us now discuss the case when X is a time-inhomogeneous Markov
chain. Setting Zn = (n, Xn) for n ≥ 0 one knows that Z = (Zn)n≥0 is a time-
homogeneous Markov chain. Given a measurable function G : {0, 1, . . . , N}×E →
R satisfying the following condition:

En,x

(
sup

0≤k≤N−n
|G(n+k, Xn+k)|

)
< ∞ (1.2.1′)

for all 0 ≤ n ≤ N and x ∈ E , the optimal stopping problem (1.2.2) therefore
naturally extends as follows:

V N (n, x) = sup
0≤τ≤N−n

En,xG(n+τ, Xn+τ) (1.2.2′)

where the supremum is taken over stopping times τ of X and Xn = x under
Pn,x with 0 ≤ n ≤ N and x ∈ E given and fixed.

As above one verifies that

SN
n+k = V N (n+k, Xn+k) (1.2.21)

under Pn,x for 0 ≤ n ≤ N − n . Moreover, inserting this into (1.1.7) and using
the Markov property one finds

V N (n+k, Xn+k) (1.2.22)

= max
(
G(n+k, Xn+k), En,x

(
V N (n+k+1, Xn+k+1) | Fn+k

))
= max

(
G(Zn+k), Ez

(
V N (Zn+k+1) | Fn+k

))
= max

(
G(Zn+k), Ez

(
V N (Z1) ◦ θn+k | Fn+k

))
= max

(
G(Zn+k), EZn+k

(
V N(Z1)

))
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for 0 ≤ k ≤ N − n − 1 where z = (n, x) with 0 ≤ n ≤ N and x ∈ E . Letting
k = 0 and using that Zn = z = (n, x) under Pz , one gets

V N (n, x) = max
(
G(n, x), TV N (n, x)

)
(1.2.23)

for n = N−1, . . . , 1, 0 where TV N (N−1, x) = EN−1,xG(N, XN ) and T is the
transition operator of Z given by

TF (n, x) = En,xF (n+1, Xn+1) (1.2.24)

for 0 ≤ n ≤ N and x ∈ E whenever the right-hand side in (1.2.24) is well defined
(finite).

The recursive relations (1.2.23) are the Wald–Bellman equations correspond-
ing to the time-inhomogeneous problem (1.2.2′) . Note that when X is time-
homogeneous (and G = G(x) only) we have V N (n, x) = V N−n(x) and (1.2.23)
reduces to (1.2.9). In order to present a reformulation of the property (1.2.12) in
Theorem 1.7 above we will proceed as follows.

6. The following definition plays a fundamental role in finding a solution to
the optimal stopping problem (1.2.2′) .

Definition 1.8. A measurable function F : {0, 1, . . . , N} × E → R is said to be
superharmonic if

TF (n, x) ≤ F (n, x) (1.2.25)

for all (n, x) ∈ {0, 1, . . . , N} × E .

It is assumed in (1.2.25) that TF (n, x) is well defined i.e. that F (n +
1, Xn+1) ∈ L1(Pn,x) for all (n, x) as above. Moreover, if F (n+k, Xn+k) ∈ L1(Pn,x)
for all 0 ≤ k ≤ N − n and all (n, x) as above, then one verifies directly by the
Markov property that the following stochastic characterization of superharmonic
functions holds:

F is superharmonic if and only if (F (n+k, Xn+k))0≤k≤N−n is
a supermartingale under Pn,x for all (n, x) ∈ {0, 1, . . . , N − 1}×E .

(1.2.26)

The proof of this fact is simple and will be given in a more general case following
(1.2.40) below.

Introduce the continuation set

C =
{
(n, x) ∈ {0, 1, . . . , N} × E : V (n, x) > G(n, x)

}
(1.2.27)

and the stopping set

D =
{
(n, x) ∈ {0, 1, . . . , N} × E : V (n, x) = G(n, x)

}
. (1.2.28)

Introduce the first entry time τD into D by setting

τD = inf {n ≤ k ≤ N : (n+k, Xn+k) ∈ D } (1.2.29)

under Pn,x where (n, x) ∈ {0, 1, . . . , N} × E .
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The preceding considerations may now be summarized in the following ex-
tension of Theorem 1.7.

Theorem 1.9. (Finite horizon: The time-inhomogeneous case) Consider the opti-
mal stopping problem (1.2.2′) upon assuming that the condition (1.2.1′) holds.
Then the value function V N satisfies the Wald–Bellman equations

V N (n, x) = max
(
G(n, x), TV N (n, x)

)
(1.2.30)

for n = N −1, . . . , 1, 0 where TV N (N −1, x) = EN−1,xG(N, XN ) and x ∈ E .
Moreover, we have:

The stopping time τD is optimal in (1.2.2′). (1.2.31)
If τ∗ is an optimal stopping time in (1.2.2′) then τD ≤ τ∗ Pn,x-a.s.
for every (n, x) ∈ {0, 1, . . . , N}×E.

(1.2.32)

The value function V N is the smallest superharmonic function which
dominates the gain function G on {0, 1, . . . , N}×E.

(1.2.33)

The stopped sequence
(
V N ((n+k) ∧ τD, X(n+k)∧τD

)
)
0≤k≤N−n

is
a martingale under Pn,x for every (n, x) ∈ {0, 1, . . . , N}×E.

(1.2.34)

Proof. The proof is carried out in exactly the same way as the proof of Theorem 1.7
above. The key identity linking the problem (1.2.2′) to the problem (1.1.5) is
(1.2.21). This yields (1.2.23) i.e. (1.2.30) as shown above. Note that (1.2.33) refines
(1.2.12) and follows by (1.2.26). The proof is complete. �

7. Consider the optimal stopping problem (1.2.2) when N = ∞ . Recall that
(1.2.2) reads as follows:

V (x) = sup
τ

ExG(Xτ ) (1.2.35)

where τ is a stopping time of X and Px(X0 = x) = 1 for x ∈ E .

Introduce the continuation set

C = { x ∈ E : V (x) > G(x) } (1.2.36)

and the stopping set
D = { x ∈ E : V (x) = G(x) }. (1.2.37)

Introduce the first entry time τD into D by setting

τD = inf { t ≥ 0 : Xt ∈ D }. (1.2.38)

8. The following definition plays a fundamental role in finding a solution to
the optimal stopping problem (1.2.35). Note that Definition 1.8 above may be
viewed as a particular case of this definition.

Definition 1.10. A measurable function F : E → R is said to be superharmonic if

TF (x) ≤ F (x) (1.2.39)

for all x ∈ E .
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It is assumed in (1.2.39) that TF (x) is well defined by (1.2.8) above i.e.
that F (X1) ∈ L1(Px) for all x ∈ E . Moreover, if F (Xn) ∈ L1(Px) for all n ≥ 0
and all x ∈ E , then the following stochastic characterization of superharmonic
functions holds (recall (1.2.26) above):

F is superharmonic if and only if (F (Xn))n≥0 is a supermartingale
under Px for every x ∈ E .

(1.2.40)

The proof of this equivalence relation is simple. Suppose first that F is
superharmonic. Then (1.2.39) holds for all x ∈ E and therefore by the Markov
property we get

TF (Xn) = EXn(F (X1)) = Ex(F (X1) ◦ θn | Fn) (1.2.41)

= Ex(F (Xn+1) | Fn) ≤ F (Xn)

for all n ≥ 0 proving the supermartingale property of (F (Xn))n≥0 under Px for
every x ∈ E . Conversely, if (F (Xn))n≥0 is a supermartingale under Px for every
x ∈ E , then the final inequality in (1.2.41) holds for all n ≥ 0 . Letting n = 0
and taking Ex on both sides gives (1.2.39). Thus F is superharmonic as claimed.

9. In the case of infinite horizon (i.e. when N = ∞ in (1.2.2) above) it is
not necessary to treat the time-inhomogeneous case separately from the time-
homogeneous case as we did it for clarity in the case of finite horizon (i.e. when
N < ∞ in (1.2.2) above). This is due to the fact that the state space E may be
general anyway (two-dimensional) and the passage from the time-inhomogeneous
process (Xn)n≥0 to the time-homogeneous process (n, Xn)n≥0 does not affect the
time set in which the stopping times of X take values (by altering the remaining
time).

Theorem 1.11. (Infinite horizon) Consider the optimal stopping problem (1.2.35)
upon assuming that the condition (1.2.1) holds. Then the value function V satis-
fies the Wald–Bellman equation

V (x) = max(G(x), TV (x)) (1.2.42)

for x ∈ E . Assume moreover when required below that

Px(τD < ∞) = 1 (1.2.43)

for all x ∈ E . Then we have:

The stopping time τD is optimal in (1.2.35). (1.2.44)
If τ∗ is an optimal stopping time in (1.2.35) then τD ≤ τ∗ Px-a.s. for
every x ∈ E.

(1.2.45)

The value function V is the smallest superharmonic function which
dominates the gain function G on E.

(1.2.46)

The stopped sequence (V (Xn∧τD))n≥0 is a martingale under Px for
every x ∈ E.

(1.2.47)



Section 1. Discrete time 19

Finally, if the condition (1.2.43) fails so that Px(τD = ∞) > 0 for some x ∈ E ,
then there is no optimal stopping time (with probability 1 ) in (1.2.35).

Proof. The key identity in reducing the problem (1.2.35) to the problem (1.1.29)
is

Sn = V (Xn) (1.2.48)

for n ≥ 0 . This can be proved by passing to the limit for N → ∞ in (1.2.4) and
using the result of Theorem 1.6 above. In exactly the same way one derives (1.2.42)
from (1.2.9). The remaining statements follow from Theorem 1.4 above. Note also
that (1.2.46) refines (1.1.38) and follows by (1.2.40). The proof is complete. �

Corollary 1.12. (Iterative method) Under the initial hypothesis of Theorem 1.11
we have

V (x) = lim
n→∞ QnG(x) (1.2.49)

for all x ∈ E .

Proof. It follows from (1.2.9) and Theorem 1.6 above. �
The relation (1.2.49) offers a constructive method for finding the value func-

tion V . (Note that n �→ QnG(x) is increasing on {0, 1, 2, . . .} for every x ∈ E .)

10. We have seen in Theorem 1.7 and Theorem 1.9 that the Wald–Bellman
equations (1.2.9) and (1.2.30) characterize the value function V N when the hori-
zon N is finite (i.e. these equations cannot have other solutions). This is due
to the fact that V N equals G in the “end of time” N . When the horizon N
is infinite, however, this characterization is no longer true for the Wald–Bellman
equation (1.2.42). For example, if G is identically equal to a constant c then
any other constant C larger than c will define a function solving (1.2.42). On
the other hand, it is evident from (1.2.42) that every solution of this equation is
superharmonic and dominates G . By (1.2.46) we thus see that a minimal solution
of (1.2.42) will coincide with the value function. This “minimality condition” (over
all points) can be replaced by a single condition as the following theorem shows.
From the standpoint of finite horizon such a “boundary condition at infinity” is
natural.

Theorem 1.13. (Uniqueness in the Wald–Bellman equation)
Under the hypothesis of Theorem 1.11 suppose that F : E → R is a function
solving the Wald–Bellman equation

F (x) = max(G(x), TF (x)) (1.2.50)

for x ∈ E . (It is assumed that F is measurable and F (X1) ∈ L1(Px) for all
x ∈ E .) Suppose moreover that F satisfies

E
(

sup
n≥0

F (Xn)
)

< ∞. (1.2.51)
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Then F equals the value function V if and only if the following “boundary con-
dition at infinity” holds:

lim sup
n→∞

F (Xn) = lim sup
n→∞

G(Xn) Px -a.s. (1.2.52)

for every x ∈ E . ( In this case the lim sup on the left-hand side of (1.2.52) equals
the lim inf , i.e. the sequence (F (Xn))n≥0 is convergent Px -a.s. for every x ∈ E .)

Proof. If F = V then by (1.2.46) we know that F is the smallest superharmonic
function which dominates G on E . Let us show (the fact of independent interest)
that any such function F must satisfy (1.2.52). Note that the condition (1.2.51)
is not needed for this implication.

Since F ≥ G we see that the left-hand side in (1.2.52) is evidently larger
than the right-hand side. To prove the reverse inequality, consider the function
H : E → R defined by

H(x) = Ex

(
sup
n≥0

G(Xn)
)

(1.2.53)

for x ∈ E . Then the key property of H stating that

H is superharmonic (1.2.54)

can be verified as follows. By the Markov property we have

TH(x) = ExH(X1) = Ex

(
EX1

(
sup
n≥0

G(Xn)
))

(1.2.55)

= Ex

(
Ex

(
sup
n≥0

G(Xn) ◦ θ1

∣∣ F1

))
= Ex

(
sup
n≥0

G(Xn+1)
)

≤ H(x)

for all x ∈ E proving (1.2.54). Moreover, since X0 = x under Px we see that
H(x) ≥ G(x) for all x ∈ E . Hence F (x) ≤ H(x) for all x ∈ E by assumption.
By the Markov property it thus follows that

F (Xn) ≤ H(Xn) = EXn

(
sup
k≥0

G(Xk)
)

= Ex

(
sup
k≥0

G(Xk) ◦ θn

∣∣ Fn

)
(1.2.56)

= Ex

(
sup
k≥0

G(Xk+n)
∣∣ Fn

)
≤ Ex

(
sup
l≥m

G(Xl)
∣∣ Fn

)
for any m ≤ n given and fixed where x ∈ E . The final expression in (1.2.56)
defines a (generalized) martingale for n ≥ 1 under Px which is known to converge
Px -a. s. as n → ∞ for every x ∈ E with the limit satisfying the following
inequality:

lim
n→∞Ex

(
sup
l≥m

G(Xl)
∣∣ Fn

)
≤ Ex

(
sup
l≥m

G(Xl)
∣∣ F∞

)
= sup

l≥m
G(Xl) (1.2.57)
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where the final identity follows from the fact that supl≥m G(Xl) is F∞ -measur-
able. Letting n → ∞ in (1.2.56) and using (1.2.57) we find

lim sup
n→∞

F (Xn) ≤ sup
l≥m

G(Xl) Px -a.s. (1.2.58)

for all m ≥ 0 and x ∈ E . Letting finally m → ∞ in (1.2.58) we end up with
(1.2.52). This ends the first part of the proof.

Conversely, suppose that F satisfies (1.2.50)–(1.2.52) and let us show that
F must then be equal to V . For this, first note that (1.2.50) implies that F is
superharmonic and that F ≥ G . Hence by (1.2.46) we see that V ≤ F . To show
that V ≥ F consider the stopping time

τDε = inf {n ≥ 0 : F (Xn) ≤ G(Xn)+ε } (1.2.59)

where ε > 0 is given and fixed. Then by (1.2.52) we see that τDε < ∞ Px -a.s.
for x ∈ E . Moreover, we claim that

(
F (XτDε∧n)

)
n≥0

is a martingale under Px

for x ∈ E . For this, note that the Markov property and (1.2.50) imply

Ex

(
F (XτDε∧n) | Fn−1

)
(1.2.60)

= Ex

(
F (Xn)I(τDε≥ n) | Fn−1

)
+ Ex

(
F (XτDε

)I(τDε< n) | Fn−1

)
= Ex

(
F (Xn) | Fn−1

)
I(τDε≥ n) + Ex

(∑n−1
k=0F (Xk)I(τDε= k) | Fn−1

)
= EXn−1

(
F (X1)

)
I(τDε ≥ n) +

∑n−1
k=0F (Xk) I(τDε = k)

= TF (Xn−1) I(τDε ≥ n) + F (XτDε
) I(τDε< n)

= F (Xn−1) I(τDε≥ n) + F (XτDε
) I(τDε< n)

= F (XτDε∧(n−1)) I(τDε≥ n) + F (XτDε∧(n−1)) I(τDε< n)

= F (XτDε∧(n−1))

for all n ≥ 1 and x ∈ E proving the claim. Hence

Ex

(
F (XτDε∧n)

)
= F (x) (1.2.61)

for all n ≥ 0 and x ∈ E . Next note that

Ex

(
F (XτDε∧n)

)
= Ex

(
F (XτDε

) I(τDε ≤ n)
)

+ Ex

(
F (Xn) I(τDε > n)

)
(1.2.62)

for all n ≥ 0 . Letting n → ∞ , using (1.2.51) and (1.2.1) with F ≥ G , we get

Ex

(
F (XτDε

)
)

= F (x) (1.2.63)

for all x ∈ E . This fact is of independent interest.
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Finally, since V is superharmonic, we find using (1.2.63) that

V (x) ≥ ExV (XτDε
) ≥ ExG(XτDε

) ≥ ExF (XτDε
) − ε = F (x) − ε (1.2.64)

for all ε > 0 and x ∈ E . Letting ε ↓ 0 we get V ≥ F as needed and the proof
is complete. �

11. Given α ∈ (0, 1] and (bounded) measurable functions g : E → R and
c : E → R+ , consider the optimal stopping problem

V (x) = sup
τ

Ex

(
ατg(Xτ ) −

τ∑
k=1

αk−1c(Xk−1)
)

(1.2.65)

where τ is a stopping time of X and Px(X0 = x) = 1 .

The value c(x) is interpreted as the cost of making the next observation of
X when X equals x . The sum in (1.2.65) by definition equals 0 when τ equals
0.

The problem formulation (1.2.65) goes back to a problem formulation due
to Bolza in classic calculus of variation (a more detailed discussion will be given
in Chapter III below). Let us briefly indicate how the problem (1.2.65) can be
reduced to the setting of Theorem 1.11 above.

For this, let X̃ = (X̃n)n≥0 denote the Markov chain X killed at rate α . It
means that the transition operator of X̃ is given by

T̃F (x) = α TF (x) (1.2.66)

for x ∈ E whenever F (X1) ∈ L1(Px) . The problem (1.2.65) then reads

V (x) = sup
τ

Ex

(
g(X̃τ ) −

τ∑
k=1

c(X̃k−1)
)

(1.2.65′)

where τ is a stopping time of X̃ and Px(X̃0 = x) = 1 .

Introduce the sequence

Ĩn = a +
n∑

k=1

c(X̃k−1) (1.2.67)

for n ≥ 1 with Ĩ0 = a in R . Then Z̃n = (X̃n, Ĩn) defines a Markov chain for
n ≥ 0 with Z̃0 = (X̃0, Ĩ0) = (x, a) under Px so that we may write Px,a instead of
Px . (The latter can be justified rigorously by passage to the canonical probability
space.) The transition operator of Z̃ = (X̃, Ĩ ) equals

T eZ F (x, a) = Ex,aF (X̃1, Ĩ1) (1.2.68)

for (x, a) ∈ E × R whenever F (X̃1, Ĩ1) ∈ L1(Px,a) .
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The problem (1.2.65′) may now be rewritten as follows:

W (x, a) = sup
τ

Ex,aG(Zτ ) (1.2.65′′)

where we set
G(z) = g(x) − a (1.2.69)

for z = (x, a) ∈ E×R . Obviously by subtracting a on both sides of (1.2.65′) we
set that

W (x, a) = V (x) − a (1.2.70)

for all (x, a) ∈ E × R .

The problem (1.2.65′′) is of the same type as the problem (1.2.35) above
and thus Theorem 1.11 is applicable. To write down (1.2.42) more explicitly note
that

T eZ W (x, a) = Ex,aW (X̃1, Ĩ1) = Ex,a

(
V (X̃1) − Ĩ1

)
(1.2.71)

= ExV (X̃1) − a − c(x) = αTV (x) − a − c(x)

so that (1.2.42) reads

V (x) − a = max
(
g(x)− a , αTV (x)− a− c(x)

)
(1.2.72)

where we used (1.2.70), (1.2.69) and (1.2.71). Clearly a can be removed from
(1.2.72) showing finally that the Wald–Bellman equation (1.2.42) takes the follow-
ing form:

V (x) = max
(
g(x) , αTV (x) − c(x)

)
(1.2.73)

for x ∈ E . Note also that (1.2.39) takes the following form:

αTF (x) − c(x) ≤ F (x) (1.2.74)

for x ∈ E . Thus F satisfies (1.2.74) if and only if (x, a) �→ F (x) − a is super-
harmonic relative to the Markov chain Z̃ = (X̃, Ĩ) . Having (1.2.73) and (1.2.74)
set out explicitly the remaining statements of Theorem 1.11 and Corollary 1.12
are directly applicable and we shall omit further details. It may be noted above
that L = T − I is the generator of the Markov chain X . More general problems
of this type (involving also the maximum functional) will be discussed in Chapter
III below. We will conclude this section by giving an illustrative example.

12. The following example illustrates general results of optimal stopping the-
ory for Markov chains when applied to a nontrivial problem in order to determine
the value function and an optimal Markov time (in the class M̄ ).

Example 1.14. Let ξ, ξ1, ξ2, . . . be independent and identically distributed random
variables, defined on a probability space (Ω,F , P) , with Eξ < 0 . Put S0 = 0 ,
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Sn = ξ1 + · · · + ξn for n ≥ 1 ; X0 = x , Xn = x + Sn for n ≥ 1 , and M =
supn≥0 Sn . Let Px be the probability distribution of the sequence (Xn)n≥0 with
X0 = x from R . It is clear that the sequence (Xn)n≥0 is a Markov chain started
at x .

For any n ≥ 1 define the gain function Gn(x) = (x+)n where x+ =
max(x, 0) for x ∈ R , and let

Vn(x) = sup
τ∈M

ExGn(Xτ ) (1.2.75)

where the supremum is taken over the class M of all Markov (stopping) times τ
satisfying Px(τ < ∞) = 1 for all x ∈ R . Let us also denote

V̄n(x) = sup
τ∈M̄

ExGn(Xτ )I(τ < ∞) (1.2.76)

where the supremum is taken over the class M̄ of all Markov times.

The problem of finding the value functions Vn(x) and V̄n(x) is of interest
for the theory of American options because these functions represent arbitrage-free
(fair, rational) prices of “Power options” under the assumption that any exercise
time τ belongs to the class M or M̄ respectively. In the present case we have
Vn(x) = V̄n(x) for n ≥ 1 and x ∈ R , and it will be clear from what follows below
that an optimal Markov time exists in the class M̄ (but does not belong to the
class M of stopping times).

We follow [144] where the authors solved the formulated problems (see also
[119]). First of all let us introduce the notion of the Appell polynomial which will
be used in the formulation of the basic results.

Let η = η(ω) be a random variable with Eeλ|η| < ∞ for some λ > 0 .
Consider the Esscher transform

x � eux

Eeuη
|u| ≤ λ, x ∈ R, (1.2.77)

and the decomposition
eux

Eeuη
=

∞∑
k=0

uk

k!
Q

(η)
k (x). (1.2.78)

Polynomials Q
(η)
k (x) are called the Appell polynomials for the random variable

η . (If E|η|n < ∞ for some n ≥ 1 then the polynomials Q
(η)
k (x) are uniquely

defined for all k ≤ n .)

The polynomials Q
(η)
k (x) can be expressed through the semi-invariants κ1 ,

κ2, . . . of the random variable η . For example,
Q

(η)
0 (x) = 1, Q

(η)
2 (x) = (x−κ1)2 − κ2,

Q
(η)
1 (x) = x − κ1, Q

(η)
3 (x) = (x−κ1)3 − 3κ2(x−κ1) − κ3,

. . . (1.2.79)
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where (as is well known) the semi-invariants κ1, κ2, . . . are expressed via the
moments µ1, µ2, . . . of η :

κ1 = µ1, κ2 = µ2 − µ2
1, κ3 = 2µ3

1 − 3µ1µ2 + µ3, . . . . (1.2.80)

Let us also mention the following property of the Appell polynomials: if
E |η|n < ∞ then for k ≤ n we have

d

dx
Q

(η)
k (x) = kQ

(η)
k−1(x), (1.2.81)

EQ
(η)
k (x+η) = xk. (1.2.82)

For simplicity of notation we will use Qk(s) to denote the polynomials
Q

(M)
k (x) for the random variable M = supn≥0 Sn . Every polynomial Qk(x) has

a unique positive root a∗
k . Moreover, Qk(x) ≤ 0 for 0 ≤ x < a∗

k and Qk(x)
increases for x ≥ a∗

k .

In accordance with the characteristic property (1.2.46) recall that the value
function Vn(x) is the smallest superharmonic (excessive) function which domi-
nates the gain function Gn(x) on R . Thus, one method to find Vn(x) is to search
for the smallest excessive majorant of the function Gn(x) . In [144] this method
is realized as follows.

For every a ≥ 0 introduce the Markov time

τa = inf{n ≥ 0 : Xn ≥ a} (1.2.83)

and for each n ≥ 1 consider the new optimal stopping problem:

V̂ (x) = sup
a≥0

ExGn(Xτa)I(τa < ∞). (1.2.84)

It is clear that Gn(Xτa) = (X+
τa

)n = Xn
τa

(on the set {τa < ∞} ). Hence

V̂ (x) = sup
a≥0

ExXn
τa

I(τa < ∞). (1.2.85)

The identity (1.2.82) prompts that the following property should be valid: if
E |M |n < ∞ then

EQn(x+M)I(x+M ≥ a) = ExXn
τa

I(τa < ∞). (1.2.86)

This formula and properties of the Appell polynomials imply that

V̂ (x) = sup
a≥0

EQn(x+M)I(x+M ≥ a) = EQn(x+M)I(x+M ≥ a∗
n). (1.2.87)

From this we see that τa∗
n

is an optimal Markov time for the problem (1.2.84).
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It is clear that V̄n(x) ≥ V̂n(x) . From (1.2.87) and properties of the Appell
polynomials we obtain that V̂n(x) is an excessive majorant of the gain function
( V̂n(x) ≥ ExV̂n(X1) and V̂n(x) ≥ Gn(x) for x ∈ R ). But V̄n(x) is the smallest
excessive majorant of Gn(x) . Thus V̄n(x) ≤ V̂n(x) .

On the whole we obtain the following result (for further details see [144]):

Suppose that E (ξ+)n+1 < ∞ and a∗
n is the largest root of the equation

Qn(x) = 0 for n ≥ 1 fixed. Denote τ∗
n = inf { k ≥ 0 : Xk ≥ a∗

n } . Then the
Markov time τ∗

n is optimal:

Vn(x) = sup
τ∈M̄

Ex(X+
τ )nI(τ < ∞) = Ex

(
X+

τ∗
n

)n
I(τ < ∞). (1.2.88)

Moreover,
Vn(x) = E Qn(x+M)I(x+M ≥ a∗

n). (1.2.89)

Remark 1.15. In the cases n = 1 and n = 2 we have

a∗
1 = EM and a∗

2 = EM +
√

DM. (1.2.90)

Remark 1.16. If P(ξ = 1) = p , P(ξ = −1) = q and p < q , then M := supn≥0 Sn

(with S0 = 0 and Sn = ξ1 + · · · + ξn ) has geometric distribution:

P(M ≥ k) =
(p

q

)k
(1.2.91)

for k ≥ 0 . Hence
EM =

q

q − p
. (1.2.92)

2. Continuous time

The aim of the present section is to exhibit basic results of optimal stopping in the
case of continuous time. We first consider a martingale approach (cf. Subsection 1.1
above). This is then followed by a Markovian approach (cf. Subsection 1.2 above).

2.1. Martingale approach

1. Let G = (Gt)t≥0 be a stochastic process defined on a filtered probability space
(Ω,F , (Ft)t≥0, P) . We interpret Gt as the gain if the observation of G is stopped
at time t . It is assumed that G is adapted to the filtration (Ft)t≥0 in the sense
that each Gt is Ft -measurable. Recall that each Ft is a σ -algebra of subsets
of Ω such that Fs ⊆ Ft ⊆ F for s ≤ t . Typically (Ft)t≥0 coincides with the
natural filtration (FG

t )t≥0 but generally may also be larger. We interpret Ft as
the information available up to time t . All our decisions in regard to optimal



Section 2. Continuous time 27

stopping at time t must be based on this information only (no anticipation is
allowed).

The following definition formalizes the previous requirement and plays a key
role in the study of optimal stopping (cf. Definition 1.1).

Definition 2.1. A random variable τ : Ω → [0,∞] is called a Markov time if
{τ ≤ t} ∈ Ft for all t ≥ 0 . A Markov time is called a stopping time if τ < ∞
P-a.s.

In the sequel we will only consider stopping times. We refer to Subsection
1.1 above for other similar comments which translate to the present setting of
continuous time without major changes.

2. We will assume that the process G is right-continuous and left-continuous
over stopping times (if τn and τ are stopping times such that τn ↑ τ as n → ∞
then Gτn → Gτ P-a.s. as n → ∞ ). We will also assume that the following
condition is satisfied (with GT = 0 when T = ∞ ):

E
(

sup
0≤t≤T

|Gt|
)

< ∞. (2.1.1)

Just as in the case of discrete time (Subsection 1.1) here too it is possible to
go beyond this condition in both theory and applications of optimal stopping,
however, none of the conclusions will essentially be different and we thus work
with (2.1.1) throughout.

In order to invoke a theorem on the existence of a right-continuous modifi-
cation of a given supermartingale, we will assume in the sequel that the filtration
(Ft)t≥0 is right-continuous and that each Ft contains all P -null sets from F .
This is a technical requirement and its enforcement has no significant impact on in-
terpretations of the optimal stopping problem under consideration and its solution
to be presented.

3. We consider the optimal stopping problem

V T
t = sup

t≤τ≤T
EGτ (2.1.2)

where τ is a stopping time and 0 ≤ t ≤ T . In (2.1.2) we admit that T can be
+∞ as well. In this case, however, we assume that the supremum is still taken
over stopping times τ , i.e. over Markov times τ satisfying t ≤ τ < ∞ . In this
case we will set Vt = V ∞

t for t ≥ 0 . Moreover, for certain reasons of convenience
we will also drop T from V T

t in (2.1.1) even if the horizon T is finite.

4. By analogy with the results of Subsection 1.1 above (discrete time case)
there are two possible ways to tackle the problem (2.1.2). The first method consists
of replacing the time interval [0, T ] by sets Dn = {tn0 , tn1 , . . . , tnn} where Dn ↑ D
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as n → ∞ and D is a (countable) dense subset of [0, T ] , applying the results of
Subsection 1.1 (the method of backward induction) to each Gn = (Gtn

i
)0≤i≤n , and

then passing to the limit as n → ∞ . In this context it is useful to know that each
stopping time τ can be obtained as a decreasing limit of the discrete stopping
times τn =

∑n
i=1 tni I(tni−1 ≤ τ < tni ) as n → ∞ . The methodology described

becomes useful for getting numerical approximations for the solution but we will
omit further details in this direction. The second method aims directly to extend
the method of essential supremum in Subsection 1.1 above from the discrete time
case to the continuous time case. This programme will now be addressed.

5. Since there is no essential difference in the treatment of either finite or
infinite horizon T , we will treat both cases at the same time by setting

Vt = V T
t (2.1.3)

for simplicity of notation.

To solve the problem (2.1.2) we will (by analogy with the results of Subsection
1.1) consider the process S = (St)t≥0 defined as follows:

St = esssup
τ≥t

E (Gτ |Ft) (2.1.4)

where τ is a stopping time. In the case of a finite horizon T we also require
in (2.1.4) that τ is smaller than or equal to T . We will see in the proof of
Theorem 2.2 below that there is no restriction to assume that the process S is
right-continuous. The process S is often referred to as the Snell envelope of G .

For the same reasons we will consider the following stopping time:

τt = inf { s ≥ t : Ss = Gs } (2.1.5)

for t ≥ 0 where inf ∅ = ∞ by definition. In the case of a finite horizon T we
also require in (2.1.5) that s is smaller than or equal to T .

Regarding the initial part of Theorems 1.2 and 1.4 (the Wald–Bellman equa-
tion) one should observe that Theorem 2.2 below implies that

St ≥ max
(
Gt, E (Ss | Ft)

)
(2.1.6)

for s ≥ t . The reverse inequality, however, is not true in general. The reason
roughly speaking lies in the fact that, unlike in discrete time, in continuous time
there is no smallest unit of time, so that no matter how close s to t is (when
strictly larger) the values Su can still wander far away from St when u ∈ (t, s) .
Note however that Theorem 2.2 below implies that the following refinement of the
Wald–Bellman equation still holds:

St = max
(
Gt, E (Sσ∧τt | Ft)

)
(2.1.7)
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for every stopping time σ larger than or equal to t (note that σ can also be
identically equal to any s ≥ t ) where τt is given in (2.1.5) above.

The other three parts of Theorems 1.2 and 1.4 (pages 3 and 8) extend to
the present case with no significant change. Thus the first part of the following
theorem shows that (Ss)s≥t and τt solve the problem in a stochastic sense. The
second part of the theorem shows that this leads to a solution of the initial problem
(2.1.2). The third part of the theorem provides a supermartingale characterization
of the solution.

Theorem 2.2. Consider the optimal stopping problem (2.1.2) upon assuming that
the condition (2.1.1) holds. Assume moreover when required below that

P(τt < ∞) = 1 (2.1.8)

where t ≥ 0 . (Note that this condition is automatically satisfied when the horizon
T is finite.) Then for all t ≥ 0 we have:

St ≥ E (Gτ | Ft) for each τ ∈ Mt, (2.1.9)
St = E (Gτt | Ft) (2.1.10)

where Mt denotes the family of all stopping times τ satisfying τ ≥ t (being also
smaller than or equal to T when the latter is finite). Moreover, if t ≥ 0 is given
and fixed, then we have:

The stopping time τt is optimal in (2.1.2). (2.1.11)
If τ∗ is an optimal stopping time in (2.1.2) then τt ≤ τ∗ P-a.s. (2.1.12)
The process (Ss)s≥t is the smallest right-continuous supermartingale
which dominates (Gs)s≥t.

(2.1.13)

The stopped process (Ss∧τt)s≥t is a right-continuous martingale. (2.1.14)

Finally, if the condition (2.1.8) fails so that P(τt = ∞) > 0 , then there is no
optimal stopping time (with probability 1) in (2.1.2).

Proof. 1◦. Let us first show that S = (St)t≥0 defined by (2.1.4) above is a
supermartingale. For this, fix t ≥ 0 and let us show that the family

{
E (Gτ | Ft) :

τ ∈ Mt

}
is upwards directed in the sense that (1.1.25) is satisfied. Indeed, note

that if σ1 and σ2 are from Mt and we set σ3 = σ1IA + σ2IAc where A ={
E (Gσ1 | Ft) ≥ E (Gσ2 | Ft)

}
, then σ3 belongs to Mt and we have

E (Gσ3 | Ft) = E (Gσ1IA + Gσ2IAc | Ft) (2.1.15)
= IAE (Gσ1 | Ft) + IAcE (Gσ2 | Ft)
= E (Gσ1 | Ft) ∨ E (Gσ2 | Ft)

implying (1.1.25) as claimed. Hence by (1.1.26) there exists a sequence {σk : k ≥
1} in Mt such that

esssup
τ∈Mt

E (Gτ | Ft) = lim
k→∞

E (Gσk
| Ft) (2.1.16)
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where E (Gσ1 | Ft) ≤ E (Gσ2 | Ft) ≤ · · · P-a.s. Since the left-hand side in (2.1.16)
equals St , by the conditional monotone convergence theorem using (2.1.1) above,
we find for any s ∈ [0, t] that

E (St | Fs) = E
(

lim
k→∞

E (Gσk
| Ft) | Fs

)
(2.1.17)

= lim
k→∞

E
(
E (Gσk

| Ft) | Fs

)
= lim

k→∞
E (Gσk

| Fs) ≤ Ss

where the final inequality follows by the definition of Ss given in (2.1.4) above.
This shows that (St)t≥0 is a supermartingale as claimed. Note also that (2.1.4)
and (2.1.16) using the monotone convergence theorem and (2.1.1) imply that

ESt = sup
τ≥t

EGτ (2.1.18)

where τ is a stopping time and t ≥ 0 .

2◦. Let us next show that the supermartingale S admits a right-continuous
modification S̃ = (S̃t)t≥0 . A well-known result in martingale theory (see e.g.
[134]) states that the latter is possible to achieve if and only if

t �→ ESt is right-continuous on R+ . (2.1.19)

To verify (2.1.19) note that by the supermartingale property of S we have
ESt ≥ · · · ≥ ESt2 ≥ ESt1 so that L := limn→∞ EStn exists and ESt ≥ L
whenever tn ↓ t as n → ∞ is given and fixed. To prove the reverse inequality, fix
ε > 0 and by means of (2.1.18) choose σ ∈ Mt such that

EGσ ≥ ESt − ε. (2.1.20)

Fix δ > 0 and note that there is no restriction to assume that tn ∈ [t, t + δ] for
all n ≥ 1 . Define a stopping time σn by setting

σn =

{
σ if σ > tn,

t + δ if σ ≤ tn
(2.1.21)

for n ≥ 1 . Then for all n ≥ 1 we have

EGσn = EGσI(σ > tn) + EGt+δI(σ ≤ tn) ≤ EStn (2.1.22)

since σn ∈ Mtn and (2.1.18) holds. Letting n → ∞ in (2.1.22) and using (2.1.1)
we get

EGσI(σ > t) + EGt+δI(σ = t) ≤ L (2.1.23)

for all δ > 0 . Letting now δ ↓ 0 and using that G is right-continuous we finally
obtain

EGσI(σ > t) + EGtI(σ = t) = EGσ ≤ L. (2.1.24)
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From (2.1.20) and (2.1.24) we see that L ≥ ESt−ε for all ε > 0 . Hence L ≥ ESt

and thus L = ESt showing that (2.1.19) holds. It follows that S admits a right-
continuous modification S̃ = (S̃t)t≥0 which we also denote by S throughout.

3◦. Let us show that (2.1.13) holds. For this, let Ŝ = (Ŝs)s≥t be another
right-continuous supermartingale which dominates G = (Gs)s≥t . Then by the
optional sampling theorem (page 60) using (2.1.1) above we have

Ŝs ≥ E (Ŝτ | Fs) ≥ E (Gτ | Fs) (2.1.25)

for all τ ∈ Ms when s ≥ t . Hence by the definition of Ss given in (2.1.4) above
we find that Ss ≤ Ŝs P-a.s. for all s ≥ t . By the right-continuity of S and Ŝ
this further implies that P(Ss ≤ Ŝs for all s ≥ t) = 1 as claimed.

4◦. Noticing that (2.1.9) follows at once from (2.1.4) above, let us now show
that (2.1.10) holds. For this, let us first consider the case when Gt ≥ 0 for all
t ≥ 0 .

For each λ ∈ (0, 1) introduce the stopping time

τλ
t = inf { s ≥ t : λSs ≤ Gs } (2.1.26)

where t ≥ 0 is given and fixed. For further reference note that by the right-
continuity of S and G we have:

λSτλ
t
≤ Gτλ

t
, (2.1.27)

τλ
t+ = τλ

t (2.1.28)

for all λ ∈ (0, 1) . In exactly the same way we find:

Sτt = Gτt , (2.1.29)
τt+ = τt (2.1.30)

for τt defined in (2.1.5) above.

Next note that the optional sampling theorem (page 60) using (2.1.1) above
implies

St ≥ E (Sτλ
t
| Ft) (2.1.31)

since τλ
t is a stopping time greater than or equal to t . To prove the reverse

inequality
St ≤ E (Sτλ

t
| Ft) (2.1.32)

consider the process
Rt = E (Sτλ

t
| Ft) (2.1.33)

for t ≥ 0 . We claim that R = (Rt)t≥0 is a supermartingale. Indeed, for s < t we
have

E (Rt | Fs) = E
(
E (Sτλ

t
| Ft) | Fs

)
= E (Sτλ

t
| Fs) ≤ E (Sτλ

s
| Fs) = Rs (2.1.34)
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where the inequality follows by the optional sampling theorem (page 60) using
(2.1.1) above since τλ

t ≥ τλ
s when s < t . This shows that R is a supermartingale

as claimed. Hence ERt+h increases when h decreases and limh↓0 ERt+h ≤ ERt .
On the other hand, note by Fatou’s lemma using (2.1.1) above that

lim
h↓0

ERt+h = lim
h↓0

ESτλ
t+h

≥ ESτλ
t

= ERt (2.1.35)

where we also use (2.1.28) above together with the facts that τλ
t+h decreases

when h decreases and S is right-continuous. This shows that t �→ ERt is right-
continuous on R+ and hence R admits a right-continuous modification which we
also denote by R in the sequel. It follows that there is no restriction to assume
that the supermartingale R is right-continuous.

To prove (2.1.32) i.e. that St ≤ Rt P-a.s. consider the right-continuous
supermartingale defined as follows:

Lt = λSt + (1 − λ)Rt (2.1.36)

for t ≥ 0 . We then claim that

Lt ≥ Gt P-a.s. (2.1.37)

for all t ≥ 0 . Indeed, we have

Lt = λSt + (1−λ)Rt = λSt + (1−λ)RtI(τλ
t = t) (2.1.38)

+ (1−λ)RtI(τλ
t > t)

= λSt + (1 − λ)E
(
StI(τλ

t = t) | Ft

)
+ (1−λ)RtI(τλ

t > t)

= λStI(τλ
t = t) + (1 − λ)StI(τλ

t = t) + λStI(τλ
t > t)

+ (1−λ)RtI(τλ
t > t)

≥ StI(τλ
t = t) + λStI(τλ

t > t) ≥ GtI(τλ
t = t) + GtI(τλ

t > t) = Gt

where in the second last inequality we used that Rt ≥ 0 and in the last inequal-
ity we used the definition of τλ

t given in (2.1.26) above. Thus (2.1.37) holds as
claimed. Finally, since S is the smallest right-continuous supermartingale which
dominates G , we see that (2.1.37) implies that

St ≤ Lt P-a.s. (2.1.39)

from where by (2.1.36) we conclude that St ≤ Rt P-a.s. Thus (2.1.32) holds as
claimed. Combining (2.1.31) and (2.1.32) we get

St = E (Sτλ
t
| Ft) (2.1.40)

for all λ ∈ (0, 1) . From (2.1.40) and (2.1.27) we find

St ≤ 1
λ

E (Gτλ
t
| Ft) (2.1.41)
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for all λ ∈ (0, 1) . Letting λ ↑ 1 , using the conditional Fatou’s lemma and (2.1.1)
above together with the fact that G is left-continuous over stopping times, we
obtain

St ≤ E (Gτ1
t
| Ft) (2.1.42)

where τ1
t is a stopping time given by

τ1
t = lim

λ↑1
τλ
t . (2.1.43)

(Note that τλ
t increases when λ increases.) Since by (2.1.4) we know that the

reverse inequality in (2.1.42) is always fulfilled, we may conclude that

St = E (Gτ1
t
| Ft) (2.1.44)

for all t ≥ 0 . Thus to complete the proof of (2.1.10) it is enough to verify that

τ1
t = τt (2.1.45)

where τt is defined in (2.1.5) above. For this, note first that τλ
t ≤ τt for all

λ ∈ (0, 1) so that τ1
t ≤ τt . On the other hand, if τt(ω) > t (the case τt(ω) = t

being obvious) then there exists ε > 0 such that τt(ω) − ε > t and Sτt(ω)−ε >
Gτt(ω)−ε ≥ 0 . Hence one can find λ ∈ (0, 1) (close enough to 1 ) such that
λSτt(ω)−ε > Gτt(ω)−ε showing that τλ

t (ω) ≥ τt(ω) − ε . Letting first λ ↑ 1 and
then ε ↓ 0 we conclude that τ1

t ≥ τt . Hence (2.1.45) holds as claimed and the
proof of (2.1.10) is complete in the case when Gt ≥ 0 for all t ≥ 0 .

5◦. In the case of general G satisfying (2.1.1) we can set

H = inf
t≥0

Gt (2.1.46)

and introduce the right-continuous martingale

Mt = E (H | Ft) (2.1.47)

for t ≥ 0 so as to replace the initial gain process G by a new gain process
G̃ = (G̃t)t≥0 defined by

G̃t = Gt − Mt (2.1.48)

for t ≥ 0 . Note that G̃ need not satisfy (2.1.1) due to the existence of M , but M

itself is uniformly integrable since H ∈ L1(P) . Similarly, G̃ is right-continuous
and not necessarily left-continuous over stopping times due to the existence of M ,
but M itself is a (uniformly integrable) martingale so that the optional sampling
theorem (page 60) is applicable. Finally, it is clear that G̃t ≥ 0 and the optional
sampling theorem implies that

S̃t = esssup
τ∈Mt

E
(
G̃τ | Ft

)
= esssup

τ∈Mt

E (Gτ − Mτ | Ft) = St − Mt (2.1.49)
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for all t ≥ 0 . A closer inspection based on the new properties of G̃ displayed
above instead of the old ones imposed on G when Gt ≥ 0 for all t ≥ 0 shows
that the proof above can be applied to G̃ and S̃ to yield the same conclusions
implying (2.1.10) in the general case.

6◦. Noticing that (2.1.11) follows by taking expectation in (2.1.10) and using
(2.1.18), let us now show that (2.1.12) holds. We claim that the optimality of τ∗
implies that Sτ∗ = Gτ∗ P-a.s. Indeed, if this would not be the case then we
would have Sτ∗ ≥ Gτ∗ P-a.s. with P(Sτ∗ > Gτ∗) > 0 . It would then follow
that EGτ∗ < ESτ∗ ≤ ESt = Vt where the second inequality follows by the
optional sampling theorem (page 60) and the supermartingale property of (Ss)s≥t

using (2.1.1) above, while the final equality is stated in (2.1.18) above. The strict
inequality, however, contradicts the fact that τ∗ is optimal. Hence Sτ∗ = Gτ∗
P-a.s. as claimed and the fact that τt ≤ τ∗ P-a.s. follows from the definition
(2.1.5) above.

7◦. To verify the martingale property (2.1.14) it is enough to prove that

ESσ∧τt = ESt (2.1.50)

for all (bounded) stopping times σ greater than or equal to t . For this, note first
that the optional sampling theorem (page 60) using (2.1.1) above implies

ESσ∧τt ≤ ESt. (2.1.51)

On the other hand, from (2.1.10) and (2.1.29) we likewise see that

ESt = EGτt = ESτt ≤ ESσ∧τt . (2.1.52)

Combining (2.1.51) and (2.1.52) we see that (2.1.50) holds and thus (Ss∧τt)s≥t

is a martingale (right-continuous by (2.1.13) above). This completes the proof of
(2.1.14).

Finally, note that the final claim follows directly from (2.1.12). This completes
the proof of the theorem. �

2.2. Markovian approach

In this subsection we will present basic results of optimal stopping when the time
is continuous and the process is Markovian. (Basic definitions and properties of
such processes are given in Subsection 4.3.)

1. Throughout we will consider a strong Markov process X = (Xt)t≥0 de-
fined on a filtered probability space (Ω,F , (Ft)t≥0, Px) and taking values in a
measurable space (E,B) where for simplicity we will assume that E = Rd for
some d ≥ 1 and B = B(Rd) is the Borel σ -algebra on Rd . It is assumed that the
process X starts at x under Px for x ∈ E and that the sample paths of X are
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right-continuous and left-continuous over stopping times (if τn ↑ τ are stopping
times, then Xτn → Xτ Px -a.s. as n → ∞ ). It is also assumed that the filtration
(Ft)t≥0 is right-continuous (implying that the first entry times to open and closed
sets are stopping times). In addition, it is assumed that the mapping x �→ Px(F ) is
measurable for each F ∈ F . It follows that the mapping x �→ Ex(Z) is measurable
for each (bounded or non-negative) random variable Z . Finally, without loss of
generality we will assume that (Ω,F) equals the canonical space (E[0,∞),B[0,∞))
so that the shift operator θt : Ω → Ω is well defined by θt(ω)(s) = ω(t+s) for
ω = (ω(s))s≥0 ∈ Ω and t, s ≥ 0 .

2. Given a measurable function G : E → R satisfying the following condition
(with G(XT ) = 0 if T = ∞ ):

Ex

(
sup

0≤t≤T
|G(Xt)|

)
< ∞ (2.2.1)

for all x ∈ E , we consider the optimal stopping problem

V (x) = sup
0≤τ≤T

ExG(Xτ ) (2.2.2)

where x ∈ E and the supremum is taken over stopping times τ of X . The
latter means that τ is a stopping time with respect to the natural filtration of
X given by FX

t = σ(Xs : 0 ≤ s ≤ t) for t ≥ 0 . Since the same results remain
valid if we take the supremum in (2.2.2) over stopping times τ with respect to
(Ft)t≥0 , and this assumption makes certain conclusions more elegant (the optimal
stopping time will be attained), we will assume in the sequel that the supremum
in (2.2.2) is taken over this larger class of stopping times. Note also that in (2.2.2)
we admit that T can be ∞ as well (infinite horizon). In this case, however, we
still assume that the supremum is taken over stopping times τ , i.e. over Markov
times satisfying 0 ≤ τ < ∞ . In this way any specification of G(X∞) becomes
irrelevant for the problem (2.2.2).

3. Recall that V is called the value function and G is called the gain func-
tion. To solve the optimal stopping problem (2.2.2) means two things. Firstly, we
need to exhibit an optimal stopping time, i.e. a stopping time τ∗ at which the
supremum is attained. Secondly, we need to compute the value V (x) for x ∈ E
as explicitly as possible.

Let us briefly comment on what one expects to be a solution to the problem
(2.2.2) (recall also Subsection 1.2 above). For this note that being Markovian
means that the process X always starts afresh. Thus following the sample path
t �→ Xt(ω) for ω ∈ Ω given and fixed and evaluating G(Xt(ω)) it is naturally
expected that at each time t we shall be able optimally to decide either to continue
with the observation or to stop it. In this way the state space E naturally splits
into the continuation set C and the stopping set D = E \ C . It follows that as
soon as the observed value Xt(ω) enters D , the observation should be stopped
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and an optimal stopping time is obtained. The central question thus arises as how
to determine the sets C and D . (Note that the same arguments also hold in the
discrete-time case of Subsection 1.2 above.)

In comparison with the general optimal stopping problem of Subsection 2.1
above, it may be noted that the description of the optimal stopping time just
given does not involve any probabilistic construction (of a new stochastic process
S = (St)t≥0 ) but is purely deterministic (obtained by splitting E into two disjoint
subsets defined by the deterministic functions G and V ).

4. In the sequel we will treat the finite horizon formulation ( T < ∞ ) and
the infinite horizon formulation ( T = ∞ ) of the optimal stopping problem (2.2.2)
at the same time. It should be noted that in the former case ( T < ∞ ) we need to
replace the process Xt by the process Zt = (t, Xt) for t ≥ 0 so that the problem
reads

V (t, x) = sup
0≤τ≤T−t

Et,xG(t+τ, Xt+τ ) (2.2.2′)

where the “rest of time” T − t changes when the initial state (t, x) ∈ [0, T ] × E
changes in its first argument. It turns out, however, that no argument below is more
seriously affected by this change, and the results obtained for the problem (2.2.2)
with T = ∞ will automatically hold for the problem (2.2.2′) if we simply think
of X to be Z (with a new “two-dimensional” state space E equal to R+ × E ).
Moreover, it may be noted in (2.2.2′) that at time T we have the “terminal”
condition V (T, x) = G(T, x) for all x ∈ E so that the first entry time of Z to
the stopping set D , denoted below by τD , will always be smaller than or equal
to T and thus finite. This works to a technical advantage of the finite horizon
formulation (2.2.2′) over the infinite horizon formulation (2.2.2) (where instead
of the condition V (T, x) = G(T, x) for all x ∈ E another “boundary condition
at infinity” such as (2.2.52) may hold).

5. Consider the optimal stopping problem (2.2.2) when T = ∞ . Recall that
(2.2.2) reads as follows:

V (x) = sup
τ

ExG(Xτ ) (2.2.3)

where τ is a stopping time (with respect to (Ft)t≥0 ) and Px(X0 = x) = 1 for
x ∈ E . Introduce the continuation set

C = {x ∈ E : V (x)>G(x)} (2.2.4)

and the stopping set
D = {x ∈ E : V (x) = G(x)} (2.2.5)

Note that if V is lsc (lower semicontinuous) and G usc (upper semicontinuous)
then C is open and D is closed. Introduce the first entry time τD of X into D
by setting

τD = inf { t ≥ 0 : Xt ∈ D }. (2.2.6)
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Note that τD is a stopping (Markov) time with respect to (Ft)t≥0 when D is
closed since both X and (Ft)t≥0 are right-continuous.

6. The following definition plays a fundamental role in solving the optimal
stopping problem (2.2.3).

Definition 2.3. A measurable function F : E → R is said to be superharmonic if

ExF (Xσ) ≤ F (x) (2.2.7)

for all stopping times σ and all x ∈ E .

It is assumed in (2.2.7) that the left-hand side is well defined (and finite) i.e.
that F (Xσ) ∈ L1(Px) for all x ∈ E whenever σ is a stopping time. Moreover,
it will be verified in the proof of Theorem 2.4 below that the following stochastic
characterization of superharmonic functions holds (recall also (1.2.40)):

F is superharmonic if and only if (F (Xt))t≥0 is a right-
continuous supermartingale under Px for every x ∈ E

(2.2.8)

whenever F is lsc and (F (Xt))t≥0 is uniformly integrable.

7. The following theorem presents necessary conditions for the existence of
an optimal stopping time.

Theorem 2.4. Let us assume that there exists an optimal stopping time τ∗ in
(2.2.3), i.e. let

V (x) = ExG(Xτ∗) (2.2.9)

for all x ∈ E . Then we have:

The value function V is the smallest superharmonic function
which dominates the gain function G on E .

(2.2.10)

Let us in addition to (2.2.9) assume that V is lsc and G is usc. Then we have:

The stopping time τD satisfies τD ≤ τ∗ Px-a.s. for all x ∈ E and
is optimal in (2.2.3).

(2.2.11)

The stopped process (V (Xt∧τD))t≥0 is a right-continuous martin-
gale under Px for every x ∈ E.

(2.2.12)

Proof. (2.2.10): To show that V is superharmonic note that by the strong Markov
property we have:

ExV (Xσ) = ExEXσG(Xτ∗) = ExEx

(
G(Xτ∗) ◦ θσ | Fσ) (2.2.13)

= ExG(Xσ+τ∗◦θσ) ≤ sup
τ

ExG(Xτ ) = V (x)
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for each stopping time σ and all x ∈ E . This establishes (2.2.7) and proves the
initial claim.

Let F be a superharmonic function which dominates G on E . Then we
have

ExG(Xτ ) ≤ ExF (Xτ ) ≤ F (x) (2.2.14)

for each stopping time τ and all x ∈ E . Taking the supremum over all τ in
(2.2.14) we find that V (x) ≤ F (x) for all x ∈ E . Since V is superharmonic
itself, this proves the final claim.

(2.2.11): We claim that V (Xτ∗) = G(Xτ∗) Px -a.s. for all x ∈ E . Indeed, if
Px

(
V (Xτ∗) > G(Xτ∗)

)
> 0 for some x ∈ E , then ExG(Xτ∗) < ExV (Xτ∗) ≤ V (x)

since V is superharmonic, leading to a contradiction with the fact that τ∗ is
optimal. From the identity just verified it follows that τD ≤ τ∗ Px -a.s. for all
x ∈ E as claimed.

To make use of the previous inequality we may note that setting σ ≡ s in
(2.2.7) and using the Markov property we get

V (Xt) ≥ EXtV (Xs) = Ex

(
V (Xt+s) | Ft

)
(2.2.15)

for all t, s ≥ 0 and all x ∈ E . This shows:

The process (V (Xt))t≥0 is a supermartingale under Px for each x ∈ E .
(2.2.16)

Moreover, to indicate the argument as clearly as possible, let us for the moment
assume that V is continuous. Then obviously it follows that (V (Xt))t≥0 is right-
continuous. Thus, by the optional sampling theorem (page 60) using (2.2.1) above,
we see that (2.2.7) extends as follows:

ExV (Xτ ) ≤ ExV (Xσ) (2.2.17)

for stopping times σ and τ such that σ ≤ τ Px -a.s. with x ∈ E . In particular,
since τD ≤ τ∗ Px -a.s. by (2.2.17) we get

V (x) = ExG(Xτ∗) = ExV (Xτ∗) ≤ ExV (XτD ) = ExG(XτD ) ≤ V (x) (2.2.18)

for x ∈ E upon using that V (XτD ) = G(XτD ) since V is lsc and G is usc. This
shows that τD is optimal if V is continuous. Finally, if V is only known to be
lsc, then by Proposition 2.5 below we know that (V (Xt))t≥0 is right-continuous
Px -a.s. for each x ∈ E , and the proof can be completed as above. This shows that
τD is optimal if V is lsc as claimed.

(2.2.12): By the strong Markov property we have
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Ex

(
V (Xt∧τD) | Fs∧τD

)
= Ex

(
EXt∧τD

G(XτD ) | Fs∧τD

)
(2.2.19)

= Ex

(
Ex

(
G(XτD ) ◦ θt∧τD | Ft∧τD

) | Fs∧τD

)
= Ex

(
Ex

(
G(XτD ) | Ft∧τD

) | Fs∧τD

)
= Ex

(
G(XτD ) | Fs∧τD

)
= EXs∧τD

(
G(XτD )

)
= V (Xs∧τD)

for all 0 ≤ s ≤ t and all x ∈ E proving the martingale property. The right-
continuity of

(
V (Xt∧τD)

)
t≥0

follows from the right-continuity of (V (Xt))t≥0 and
the proof is complete. �

The following fact was needed in the proof above to extend the result from
continuous to lsc V .

Proposition 2.5. If a superharmonic function F : E → R is lsc (lower semicontin-
uous), then the supermartingale (F (Xt))t≥0 is right-continuous Px -a.s. for every
x ∈ E .

Proof. Firstly, we will show that

F (Xτ ) = lim
h↓0

F (Xτ+h) Px -a.s. (2.2.20)

for any given stopping time τ and x ∈ E . For this, note that the right-continuity
of X and the ls-continuity of F , we get

F (Xτ ) ≤ lim inf
h↓0

F (Xτ+h) Px -a.s. (2.2.21)

To prove the reverse inequality we will first derive it for τ ≡ 0 , i.e. we have

lim sup
h↓0

F (Xh) ≤ F (x) Px -a.s. (2.2.22)

For this, note by Blumenthal’s 0-1 law (cf. page 97) that lim suph↓0 F (Xh) is
equal Px -a.s. to a constant c ∈ R . Let us assume that c > F (x) . Then there
is ε > 0 such that c > F (x)+ε . Set Aε = { y ∈ E : F (y) > F (x)+ε } and
consider the stopping time τε = inf { h ≥ 0 : Xh ∈ Aε } . By definition of c
and Aε we see that τε = 0 Px -a.s. Note however that Aε is open (since F is
lsc) and that we cannot claim a priori that Xτε , i.e. x , belongs to Aε as one
would like to reach a contradiction. For this reason choose an increasing sequence
of closed sets Kn for n ≥ 1 such that

⋃∞
n=1 Kn = Aε . Consider the stopping

time τn = inf { h ≥ 0 : Xh ∈ Kn } for n ≥ 1 . Then τn ↓ τε as n → ∞ and
since Kn is closed we see that Xτn ∈ Kn for all n ≥ 1 . Hence Xτn ∈ Aε i.e.
F (Xτn) > F (x) + ε for all n ≥ 1 . Using that F is superharmonic this implies

F (x) ≥ ExF (Xτn∧1) = ExF (Xτn)I(τn ≤ 1) + ExF (X1)I(τn > 1) (2.2.23)

≥ (F (x) + ε)P(τn ≤ 1) + ExF (X1)I(τn > 1) → F (x) + ε
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as n → ∞ since τn ↓ 0 Px -a.s. as n → ∞ and F (X1) ∈ L1(Px) . As clearly
(2.2.23) is impossible, we may conclude that (2.2.22) holds as claimed.

To treat the case of a general stopping time τ , take Ex on both sides of
(2.2.22) and insert x = Xτ . This by the strong Markov property gives

F (Xτ ) ≥ EXτ

(
lim sup

h↓0
F (Xh)

)
= Ex

(
lim sup

h↓0
F (Xh) ◦ θτ | Fτ

)
(2.2.24)

= Ex

(
lim sup

h↓0
F (Xτ+h) | Fτ

)
= lim sup

h↓0
F (Xτ+h) Px-a.s.

since lim suph↓0 F (Xτ+h) is Fτ+ -measurable and Fτ = Fτ+ by the right-conti-
nuity of (Ft)t≥0 . Combining (2.2.21) and (2.2.24) we get (2.2.20). In particular,
taking τ ≡ t we see that

lim
h↓0

F (Xt+h) = F (Xt) Px -a.s. (2.2.25)

for all t ≥ 0 . Note that the Px -null set in (2.2.25) does depend on the given t .

Secondly, by means of (2.2.20) we will now show that a single Px -null set can
be selected so that the convergence relation in (2.2.25) holds on its complement
simultaneously for all t ≥ 0 . For this, set τ0 = 0 and define the stopping time

τn = inf { t ≥ τn−1 : |F (Xt) − F (Xτn−1)| > ε/2 } (2.2.26)

for n = 1, 2, . . . where ε > 0 is given and fixed. By (2.2.20) we see that for
each n ≥ 1 there is a Px -null set Nn such that τn > τn−1 on Ω \ Nn .
Continuing the procedure (2.2.26) by transfinite induction over countable ordi-
nals (there can be at most countably many disjoint intervals in R+ ) and calling
the union of the countably many Px -null set by Nε , it follows that for each
ω ∈ Ω \Nε and each t ≥ 0 there is a countable ordinal α such that τα(ω) ≤ t <
τα+1(ω) . Hence for every s ∈ [τα(ω), τα+1(ω)) we have |F (Xt(ω))−F (Xs(ω))| ≤
|F (Xt(ω))−F (Xτα(ω))| + |F (Xs(ω))−F (Xα(ω))| ≤ ε/2 + ε/2 = ε . This shows
that lim sups↓t |F (Xt)−F (Xs)| ≤ ε on Ω \ Nε . Setting N =

⋃∞
n=1 N1/n we see

that Px(N) = 0 and lims↓t F (Xs) = F (Xt) on Ω\N completing the proof. �

Remark 2.6. The result and proof of Theorem 2.4 above extend in exactly the
same form (by slightly changing the notation only) to the finite horizon problem
(2.2.2′) . We will omit further details in this direction.

8. The following theorem provides sufficient condition for the existence of an
optimal stopping time.

Theorem 2.7. Consider the optimal stopping problem (2.2.3) upon assuming that
the condition (2.2.1) is satisfied. Let us assume that there exists the smallest su-
perharmonic function V̂ which dominates the gain function G on E . Let us in
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addition assume that V̂ is lsc and G is usc. Set D = {x ∈ E : V̂ (x) = G(x)}
and let τD be defined by (2.2.6) above. We then have:

If Px(τD < ∞) = 1 for all x ∈ E, then V̂ = V and τD is optimal
in (2.2.3).

(2.2.27)

If Px(τD < ∞) < 1 for some x ∈ E, then there is no optimal
stopping time (with probability 1) in (2.2.3).

(2.2.28)

Proof. Since V̂ is superharmonic, we have

ExG(Xτ ) ≤ ExV̂ (Xτ ) ≤ V̂ (x) (2.2.29)

for all stopping times τ and all x ∈ E . Taking the supremum in (2.2.17) over all
τ we find that

G(x) ≤ V (x) ≤ V̂ (x) (2.2.30)

for all x ∈ E . Assuming that Px(τD < ∞) = 1 for all x ∈ E , we will now present
two different proofs of the fact that V̂ = V implying also that τD is optimal in
(2.2.3).

First proof. Let us assume that G is bounded. With ε > 0 given and fixed,
consider the sets:

Cε = { x ∈ E : V̂ (x) > G(x)+ε }, (2.2.31)

Dε = { x ∈ E : V̂ (x) ≤ G(x)+ε }. (2.2.32)

Since V̂ is lsc and G is usc we see that Cε is open and Dε is closed. Moreover,
it is clear that Cε ↑ C and Dε ↓ D as ε ↓ 0 where C and D are defined by
(2.2.4) and (2.2.5) above respectively.

Define the stopping time

τDε = inf { t ≥ 0 : Xt ∈ Dε}. (2.2.33)

Since D ⊆ Dε and Px(τD < ∞) = 1 for all x ∈ E , we see that Px(τDε < ∞) = 1
for all x ∈ E . The latter fact can also be derived directly (without assuming the
former fact) by showing that lim supt→∞ V̂ (Xt) = lim supt→∞ G(Xt) Px -a.s. for
all x ∈ E . This can be done in exactly the same way as in the first part of the
proof of Theorem 1.13.

In order to show that

ExV̂
(
XτDε

)
= V̂ (x) (2.2.34)

for all x ∈ E , we will first show that

G(x) ≤ ExV̂
(
XτDε

)
(2.2.35)
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for all x ∈ E . For this, set

c = sup
x∈E

(
G(x) − ExV̂ (XτDε

)
)

(2.2.36)

and note that
G(x) ≤ c + ExV̂

(
XτDε

)
(2.2.37)

for all x ∈ E . (Observe that c is finite since G is bounded implying also that
V̂ is bounded.)

Next by the strong Markov property we find

ExEXσ V̂
(
XτDε

)
= ExEx

(
V̂
(
XτDε

) ◦ θσ | Fσ

)
(2.2.38)

= ExEx

(
V̂
(
Xσ+τDε◦θσ

) | Fσ

)
= ExV̂

(
Xσ+τDε◦θσ

) ≤ ExV̂
(
XτDε

)

using that V̂ is superharmonic and lsc (recall Proposition 2.5 above) and σ +
τDε ◦ θσ ≥ τDε since τDε is the first entry time to a set. This shows that the
function

x �→ ExV̂
(
XτDε

) is superharmonic (2.2.39)

from E to R . Hence the function of the right-hand side of (2.2.37) is also super-
harmonic so that by the definition of V̂ we can conclude that

V̂ (x) ≤ c + ExV̂
(
XτDε

) (2.2.40)

for all x ∈ E .

Given 0 < δ ≤ ε choose xδ ∈ E such that

G(xδ) − Exδ
V̂
(
XτDε

) ≥ c − δ. (2.2.41)

Then by (2.2.40) and (2.2.41) we get

V̂ (xδ) ≤ c + Exδ
V̂
(
XτDε

) ≤ G(xδ) + δ ≤ G(xδ) + ε. (2.2.42)

This shows that xδ ∈ Dε and thus τDε ≡ 0 under Pxδ
. Inserting the latter

conclusion into (2.2.41) we get

c − δ ≤ G(xδ) − V̂ (xδ) ≤ 0. (2.2.43)

Letting δ ↓ 0 we see that c ≤ 0 thus proving (2.2.35) as claimed. Using the
definition of V̂ and (2.2.39) we see that (2.2.34) follows directly from (2.2.35).

Finally, from (2.2.34) we get

V̂ (x) = ExV̂
(
XτDε

) ≤ ExG
(
XτDε

)
+ ε ≤ V (x) + ε (2.2.44)
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for all x ∈ E upon using that V̂
(
XτDε

) ≤ G
(
XτDε

)
+ ε since V̂ is lsc and G

is usc. Letting ε ↓ 0 in (2.2.44) we see that V̂ ≤ V and thus by (2.2.30) we can
conclude that V̂ = V . From (2.2.44) we thus also see that

V (x) ≤ ExG
(
XτDε

)
+ ε (2.2.45)

for all x ∈ E .

Letting ε ↓ 0 and using that Dε ↓ D we see that τDε ↑ τ0 where τ0 is a
stopping time satisfying τ0 ≤ τD . Since V is lsc and G is usc it is easily seen
from the definition of τDε that V

(
XτDε

) ≤ G
(
XτDε

)
+ ε for all ε > 0 . Letting

ε ↓ 0 and using that X is left-continuous over stopping times it follows that
V (Xτ0) ≤ G(Xτ0) since V is lsc and G is usc. This shows that V (Xτ0) = G(Xτ0)
and therefore τD ≤ τ0 showing that τ0 = τD . Thus τDε ↑ τD as ε ↓ 0 .

Making use of the latter fact in (2.2.34) upon letting ε ↓ 0 and applying
Fatou’s lemma, we get

V (x) ≤ lim sup
ε↓0

ExG
(
XτDε

) ≤ Ex lim sup
ε↓0

G
(
XτDε

)
(2.2.46)

≤ ExG
(

lim sup
ε↓0

XτDε

)
= ExG(XτD)

using that G is usc. This shows that τD is optimal in the case when G is
bounded.

Second proof. We will divide the second proof in two parts depending on if
G is bounded (from below) or not.

1◦. Let us assume that G is bounded from below. It means that c :=
infx∈E G(x) > −∞ . Replacing G by G− c and V̂ by V̂ − c when c < 0 we see
that there is no restriction to assume that G(x) ≥ 0 for all x ∈ E .

By analogy with (2.2.31) and (2.2.32), with 0 < λ < 1 given and fixed,
consider the sets

Cλ = { x ∈ E : λV̂ (x) > G(x) }, (2.2.47)

Dλ = { x ∈ E : λV̂ (x) ≤ G(x) }. (2.2.48)

Since V̂ is lsc and G is usc we see that Cλ is open and D is closed. Moreover,
it is clear that Cλ ↑ C and Dλ ↓ D as λ ↑ 1 where C and D are defined by
(2.2.4) and (2.2.5) above respectively.

Define the stopping time

τDλ
= inf { t ≥ 0 : Xt ∈ Dλ}. (2.2.49)

Since D ⊆ Dλ and Px(τD < ∞) = 1 for all x ∈ E , we see that Px(τDλ
< ∞) = 1

for all x ∈ E . (The latter fact can also be derived directly as in the remark
following (2.2.33) above.)
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In order to show that

ExV̂
(
XτDλ

)
= V̂ (x) (2.2.50)

for all x ∈ E , we will first note that

G(x) ≤ λV̂ (x) + (1−λ)ExV̂
(
XτDλ

)
(2.2.51)

for all x ∈ E . Indeed, if x ∈ Cλ then G(x) < λV̂ (x) ≤ λV̂ (x)+(1−λ)ExV̂
(
XτDλ

)
since V̂ ≥ G ≥ 0 on E . On the other hand, if x ∈ Dλ then τDλ

≡ 0 and (2.2.51)
follows since G ≤ V̂ on E .

Next in exactly the same way as in (2.2.38) above one verifies that the func-
tion

x �→ ExV̂
(
XτDλ

)
is superharmonic (2.2.52)

from E to R . Hence the function on the right-hand side of(2.2.51) is superhar-
monic so that by the definition of V we can conclude that

V̂ (x) ≤ λV̂ (x) + (1−λ)ExV̂
(
XτDλ

)
(2.2.53)

for all x ∈ E . This proves (2.2.50) as claimed.

From (2.2.50) we get

V̂ (x) = ExV̂
(
XτDλ

) ≤ 1
λ

ExG
(
XτDλ

) ≤ 1
λ

V (x) (2.2.54)

for all x ∈ E upon using that V̂
(
XτDλ

) ≤ (1/λ)G
(
XτDλ

)
since V̂ is lsc and G

is usc. Letting λ ↑ 1 in (2.2.54) we see that V̂ ≤ V and thus by (2.2.30) we can
conclude that V̂ = V . From (2.2.54) we thus see that

V (x) ≤ 1
λ

ExG
(
XτDλ

)
(2.2.55)

for all x ∈ E and all 0 ≤ λ < 1 .

Letting λ ↑ 1 and using that Dλ ↓ D we see that τDλ
↑ τ1 where τ1 is a

stopping time satisfying τ1 ≤ τD . Since V is lsc and G is usc it is easily seen from
the definition of τDλ

that V (τDλ
) ≤ (1/λ)G(τDλ

) for all 0 < λ < 1 . Letting
λ ↑ 1 and using that X is left-continuous over stopping times it follows that
V (Xτ1) ≤ G(Xτ1) since V is lsc and G is usc. This shows that V (Xτ1) = G(Xτ1)
and therefore τD ≤ τ1 showing that τ1 = τD . Thus τDλ

↑ τ1 as λ ↑ 1 .

Making use of the latter fact in (2.2.55) upon letting λ ↑ 1 and applying
Fatou’s lemma, we get

V (x) ≤ lim sup
λ↑1

ExG
(
XτDλ

) ≤ Ex lim sup
λ↑1

G
(
XτDλ

)
(2.2.56)

≤ ExG
(

lim sup
λ↑1

XτDλ

)
= ExG(XτD)
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using that G is usc. This shows that τD is optimal in the case when G is bounded
from below.

2◦. Let us assume that G is a (general) measurable function satisfying
(2.2.1) (i.e. not necessarily bounded or bounded from below). Then Part 1◦ of
the proof can be extended by means of the function h : E → R defined by

h(x) = Ex

(
inf
t≥0

G(Xt)
)

(2.2.57)

for x ∈ E . The key observation is that −h is superharmonic which is seen as
follows (recall (2.2.57)):

Ex(−h(Xσ)) = ExEXσ sup
t≥0

(−G(Xt)) = ExEx

(
sup
t≥0

(−G(Xt)) ◦ θσ | Fσ

)
(2.2.58)

= ExEx

(
sup
t≥0

(−G(Xσ+t))
)
≤ −h(x)

for all x ∈ E proving the claim. Moreover, it is obvious that V̂ − h ≥ G − h ≥ 0
on E . Knowing this we can define sets Cλ and Dλ by extending (2.2.47) and
(2.2.48) as follows:

Cλ =
{

x ∈ E : λ
(
V̂ (x)− h(x)

)
> G(x)− h(x)

}
(2.2.59)

Dλ =
{

x ∈ E : λ
(
V̂ (x)− h(x)

) ≤ G(x)− h(x)
}

(2.2.60)

for 0 < λ < 1 .

We then claim that

G(x) − h(x) ≤ λ
(
V̂ (x) − h(x)

)
+ (1−λ)Ex

(
V̂ (XτDλ

) − h(XτDλ
)
)

(2.2.61)

for all x ∈ E . Indeed, if x ∈ Cλ then (2.2.61) follows by the fact that V̂ ≥ h
on E . On the other hand, if x ∈ Dλ then τDλ

= 0 and the inequality (2.2.61)
reduces to the trivial inequality that G ≤ V̂ . Thus (2.2.61) holds as claimed.

Since −h is superharmonic we have

−h(x) ≥ −λh(x) + (1−λ)Ex

(− h(XτDλ
)
)

(2.2.62)

for all x ∈ E . From (2.2.61) and (2.2.62) we see that

G(x) ≤ λV̂ (x) + (1−λ)ExV̂
(
XτDλ

)
(2.2.63)

for all x ∈ E . Upon noting that Dλ ↓ D as λ ↑ 1 the rest of the proof can be
carried out in exactly the same way as in Part 1◦ above. (If h does not happen
to be lsc, then Cλ and Dλ are still measurable sets and thus τDλ

is a stopping
time (with respect to the completion of (FX

t )t≥0 by the family of all Px -null
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sets from FX∞ for x ∈ E ). Moreover, it is easily verified using the strong Markov
property of X and the conditional Fatou lemma that

h(XτD) ≤ lim sup
λ↓0

h
(
XτDλ

)
Px -a.s. (2.2.64)

for all x ∈ E , which is sufficient for the proof.)

The final claim of the theorem follows from (2.2.11) in Theorem 2.4 above.
The proof is complete. �

Remark 2.8. The result and proof of Theorem 2.7 above extend in exactly the
same form (by slightly changing the notation only) to the finite horizon problem
(2.2.2′) . Note moreover in this case that τD ≤ T < ∞ (since V (T, x) = G(T, x)
and thus (T, x) ∈ D for all x ∈ E ) so that the condition Px(τD < ∞) = 1 is
automatically satisfied for all x ∈ E and need not be assumed.

9. The following corollary is an elegant tool for tackling the optimal stopping
problem in the case when one can prove directly from definition of V that V is
lsc. Note that the result is particularly useful in the case of finite horizon since
it provides the existence of an optimal stopping time τ∗ by simply identifying it
with τD from (2.2.6) above.

Corollary 2.9. (The existence of an optimal stopping time)

Infinite horizon. Consider the optimal stopping problem (2.2.3) upon assuming
that the condition (2.2.1) is satisfied. Suppose that V is lsc and G is usc. If
Px(τD < ∞) = 1 for all x ∈ E , then τD is optimal in (2.2.3). If Px(τD < ∞) < 1
for some x ∈ E , then there is no optimal stopping time (with probability 1) in
(2.2.3).

Finite horizon. Consider the optimal stopping problem (2.2.2′) upon assuming
that the corresponding condition (2.2.1) is satisfied. Suppose that V is lsc and G
is usc. Then τD is optimal in (2.2.2′) .

Proof. The case of finite horizon can be proved in exactly the same way as the
case of infinite horizon if the process (Xt) is replaced by the process (t, Xt) for
t ≥ 0 . A proof in the case of infinite horizon can be given as follows.

The key is to show that V is superharmonic. For this, note that V is
measurable (since it is lsc) and thus so is the mapping

V (Xσ) = sup
τ

EXσG(Xτ ) (2.2.65)

for any stopping time σ which is given and fixed. On the other hand, by the
strong Markov property we have

EXσG(Xτ ) = Ex

(
G(Xσ+τ◦θσ ) | Fσ

)
(2.2.66)
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for every stopping time τ and x ∈ E . From (2.2.65) and (2.2.66) we see that

V (Xσ) = esssup
τ

Ex

(
G(Xσ+τ◦θσ) | Fσ

)
(2.2.67)

under Px where x ∈ E is given and fixed.

Next we will show that the family{
Ex(Xσ+τ◦θσ | Fσ

)
: τ is a stopping time

}
(2.2.68)

is upwards directed in the sense of (1.1.25). Indeed, if τ1 and τ2 are stopping
times given and fixed, set ρ1 = σ + τ1 ◦ θσ and ρ2 = σ + τ2 ◦ θσ , and define

B =
{

Ex(Xρ1 | Fσ) ≥ Ex(Xρ2 | Fσ)
}
. (2.2.69)

Then B ∈ Fσ and the mapping

ρ = ρ1 IB + ρ2 IBc (2.2.70)

is a stopping time. To verify this let us note that {ρ ≤ t} = ({ρ1 ≤ t} ∩ B) ∪
({ρ2 ≤ t}∩Bc) = ({ρ1 ≤ t}∩B ∩ {σ ≤ t})∪ ({ρ2 ≤ t}∩Bc ∩ {σ ≤ t}) ∈ Ft since
B and Bc belong to Fσ proving the claim. Moreover, the stopping time ρ can
be written as

ρ = σ + τ ◦ θσ (2.2.71)

for some stopping time τ . Indeed, setting

A =
{

EX0G(Xτ1) ≥ EX0G(Xτ2)
}

(2.2.72)

we see that A ∈ F0 and B = θ−1
σ (A) upon recalling (2.2.66). Hence from (2.2.70)

we get
ρ = (σ + τ1 ◦ θσ)IB + (σ + τ2 ◦ θσ)IBc (2.2.73)

= σ +
(
(τ1 ◦ θσ)(IA ◦ θσ) + (τ2 ◦ θσ)(IAc ◦ θσ)

)
= σ + (τ1IA + τ2IAc) ◦ θσ

which implies that (2.2.71) holds with the stopping time τ = τ1 IA + τ2 IAc . (The
latter is a stopping time since {τ ≤ t} = ({τ1 ≤ t}∩A)∪ ({τ2 ≤ t}∩Ac) ∈ Ft for
all t ≥ 0 due to the fact that A ∈ F0 ⊆ Ft for all t ≥ 0 .) Finally, we have

E(Xρ | Fσ) = E(Xρ1 | Fσ)IB + E(Xρ2 | Fσ)IBc (2.2.74)

= E(Xρ1 | Fσ) ∨ E(Xρ2 | Fσ)

proving that the family (2.2.68) is upwards directed as claimed.

From the latter using (1.1.25) and (1.1.26) we can conclude that there exists
a sequence of stopping times {τn : n ≥ 1} such that

V (Xσ) = lim
n→∞Ex

(
G(Xσ+τn◦θσ) | Fσ

)
(2.2.75)
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where the sequence
{

Ex

(
G(Xσ+τn◦θσ) | Fσ

)
: n ≥ 1

}
is increasing Px -a.s. By

the monotone convergence theorem using (2.2.1) above we can therefore conclude

ExV (Xσ) = lim
n→∞ExG(Xσ+τn◦θσ) ≤ V (x) (2.2.76)

for all stopping times σ and all x ∈ E . This proves that V is superharmonic.
(Note that the only a priori assumption on V used so far is that V is measurable.)
As evidently V is the smallest superharmonic function which dominates G on
E (recall (2.2.14) above) we see that the remaining claims of the corollary follow
directly from Theorem 2.7 above. This completes the proof. �
Remark 2.10. Note that the assumption of lsc on V and usc on G is natural,
since the supremum of lsc functions defines an lsc function, and since every usc
function attains its supremum on a compact set. To illustrate the former claim
note that if the function

x �→ ExG(Xτ ) (2.2.77)

is continuous (or lsc) for every stopping time τ , then x �→ V (x) is lsc and the
results of Corollary 2.9 are applicable. This yields a powerful existence result by
simple means (both in finite and infinite horizon). We will exploit the latter in
our study of finite horizon problems in Chapters VI–VIII below. On the other
hand, if X is a one-dimensional diffusion, then V is continuous whenever G is
measurable (see Subsection 9.3 below). Note finally that if Xt converges to X∞
as t → ∞ then there is no essential difference between infinite and finite horizon,
and the second half of Corollary 2.9 above (Finite horizon) applies in this case as
well, no matter if τD is finite or not. In the latter case one sees that τD is an
optimal Markov time (recall Example 1.14 above).

Remark 2.11. Theorems 2.4 and 2.7 above have shown that the optimal stopping
problem (2.2.2) is equivalent to the problem of finding the smallest superharmonic
function V̂ which dominates G on E . Once V̂ is found it follows that V = V̂
and τD from (2.2.6) is optimal (if no obvious contradiction arises).

There are two traditional ways for finding V̂ :

(i) Iterative procedure (constructive but non-explicit),

(ii) Free-boundary problem (explicit or non-explicit).

Note that Corollary 2.9 and Remark 2.10 present yet another way for finding V̂
simply by identifying it with V when the latter is known to be sufficiently regular
(lsc).

The book [196, Ch. 3] provides numerous examples of (i) under various condi-
tions on G and X . For example, it is known that if G is lsc and Ex inft≥0 G(Xt)
> −∞ for all x ∈ E , then V̂ can be computed as follows:

QnG(x) := G(x) ∨ ExG(X1/2n), (2.2.78)

V̂ (x) = lim
n→∞ lim

N→∞
QN

n G(x) (2.2.79)
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for x ∈ E where QN
n is the N -th power of Qn . The method of proof relies

upon discretization of the time set R+ and making use of discrete-time results of
optimal stopping reviewed in Subsection 1.2 above. It follows that

If G is continuous and X is a Feller process, then V is lsc. (2.2.80)

The present book studies various examples of (ii). The basic idea (following from
the results of Theorems 2.4 and 2.7) is that V̂ and C ( or D ) should solve the
free-boundary problem:

LX V̂ ≤ 0 (V̂ minimal), (2.2.81)

V̂ ≥ G (V̂ > G on C & V̂ = G on D) (2.2.82)

where LX is the characteristic (infinitesimal) operator of X (cf. Chapter II be-
low).

Assuming that G is smooth in a neighborhood of ∂C the following “rule of
thumb” is valid. If X after starting at ∂C enters immediately into int (D) (e.g.
when X is a diffusion process and ∂C is sufficiently nice) then the condition
(2.2.81) (under (2.2.82) above) splits into the two conditions:

LX V̂ = 0 in C, (2.2.83)

∂V̂

∂x

∣∣∣
∂C

=
∂G

∂x

∣∣∣
∂C

(smooth fit). (2.2.84)

On the other hand, if X after starting at ∂C does not enter immediately into
int (D) (e.g. when X has jumps and no diffusion component while ∂C may still
be sufficiently nice) then the condition (2.2.81) (under (2.2.82) above) splits into
the two conditions:

LX V̂ = 0 in C, (2.2.85)

V̂
∣∣
∂C

= G
∣∣
∂C

(continuous fit). (2.2.86)

A more precise meaning of these conditions will be discussed in Chapter IV below
(and through numerous examples throughout).

Remark 2.12. (Linear programming) A linear programming problem may be de-
fined as the problem of maximizing or minimizing a linear function subject to
linear constraints.

Optimal stopping problems may be viewed as linear programming problems
(cf. [55, p. 107]). Indeed, we have seen in Theorems 2.4 and 2.7 that the op-
timal stopping problem (2.2.2) is equivalent to finding the smallest superhar-
monic function V̂ which dominates G on E . Letting L denote the linear
space of all superharmonic functions, letting the constrained set be defined by
LG = {V ∈ L : V ≥ G } , and letting the objective function be defined by
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F (V ) = V for V ∈ L , the optimal stopping problem (2.2.2) is equivalent to the
linear programming problem

V̂ = inf
V ∈LG

F (V ) . (2.2.87)

Clearly, this formulation/interpretation extends to the martingale setting of Sec-
tion 2.1 (where instead of superharmonic functions we need to deal with super-
martingales) as well as to discrete time of both martingale and Markovian settings
(Sections 1.1 and 1.2). Likewise, the free-boundary problem (2.2.81)–(2.2.82) may
be viewed as a linear programming problem.

A dual problem to the primal problem (2.2.87) can be obtained using the fact
that the first hitting time τ∗ of Ŝt = V̂ (Xt) to Gt = G(Xt) is optimal, so that

sup
t

(Gt−Ŝt) = 0 (2.2.88)

since Ŝt ≥ Gt for all t . It follows that

inf
S

E sup
t

(Gt−St) = 0 (2.2.89)

where the infimum is taken over all supermartingales S satisfying St ≥ Gt for all
t . (Note that (2.2.89) holds without the expectation sign as well.) Moreover, the
infimum in (2.2.89) can equivalently be taken over all supermartingales S such
that ES0 = EŜ0 (where we recall that EŜ0 = supτ EGτ ). Indeed, this follows
since by the supermartingale property we have ESτ∗ ≤ ES0 so that

E sup
t

(Gt−St) ≥ E(Gτ∗−Sτ∗) ≥ EGτ∗−ES0 = EGτ∗−EŜ0 = 0 . (2.2.90)

Finally, since (Ŝt∧τ∗)t≥0 is a martingale, we see that (2.2.89) can also be written
as

inf
M

E sup
t

(Gt−Mt) = 0 (2.2.91)

where the infimum is taken over all martingales M satisfying EM0 = EŜ0 . In
particular, the latter claim can be rewritten as

sup
τ

EGτ = inf
M

E sup
t

(Gt−Mt) (2.2.92)

where the infimum is taken over all martingales M satisfying EM0 = 0 .

Notes. Optimal stopping problems originated in Wald’s sequential analysis
[216] representing a method of statistical inference (sequential probability ratio
test) where the number of observations is not determined in advance of the ex-
periment (see pp. 1–4 in the book for a historical account). Snell [206] formu-
lated a general optimal stopping problem for discrete-time stochastic processes
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(sequences), and using the methods suggested in the papers of Wald & Wolfowitz
[219] and Arrow, Blackwell & Girshick [5], he characterized the solution by means
of the smallest supermartingale (called Snell’s envelope) dominating the gain se-
quence. Studies in this direction (often referred to as martingale methods) are
summarized in [31].

The key equation V (x) = max(G(x), ExV (X1)) was first stated explicitly in
[5, p. 219] (see also the footnote on page 214 in [5] and the book [18, p. 253]) but
was already characterized implicitly by Wald [216]. It is the simplest equation of
“dynamic programming” developed by Bellman (cf. [15], [16]). This equation is
often referred to as the Wald–Bellman equation (the term which we use too) and it
was derived in the text above by a dynamic programming principle of “backward
induction”. For more details on optimal stopping problems in the discrete-time
case see [196, pp. 111–112].

Following initial findings by Wald, Wolfowitz, Arrow, Blackwell and Girshick
in discrete time, studies of sequential testing problems for continuous-time pro-
cesses (including Wiener and Poisson processes) was initiated by Dvoretzky, Kiefer
& Wolfowitz [51], however, with no advance to optimal stopping theory.

A transparent connection between optimal stopping and free-boundary prob-
lems first appeared in the papers by Mikhalevich [135] and [136] where he used
the “principle of smooth fit” in an ad hoc manner. In the beginning of the 1960’s
several authors independently (from each other and from Mikhalevich) also con-
sidered free-boundary problems (with “smooth-fit” conditions) for solving various
problems in sequential analysis, optimal stopping, and optimal stochastic control.
Among them we mention Chernoff [29], Lindley [126], Shiryaev [187], [188], [190],
Bather [10], Whittle [222], Breakwell & Chernoff [22] and McKean [133]. While
in the papers from the 1940’s and 50’s the ‘stopped’ processes were either sums
of independent random variables or processes with independent increments, the
‘stopped’ processes in these papers had a more general Markovian structure.

Dynkin [52] formulated a general optimal stopping problem for Markov pro-
cesses and characterized the solution by means of the smallest superharmonic
function dominating the gain function. Dynkin treated the case of discrete time
in detail and indicated that the analogous results also hold in the case of con-
tinuous time. (For a connection of these results with Snell’s results [206] see the
corresponding remark in [52].)

The 1960’s and 70’s were years of an intensive development of the general
theory of optimal stopping both in the “Markovian” and “martingale” setting as
well as both in the discrete and continuous time. Among references dealing mainly
with continuous time we mention [191], [88], [87], [193], [202], [210], [194], [184],
[117], [62], [63], [211], [59], [60], [61], [141]. The book by Shiryaev [196] (see also
[195]) provides a detailed presentation of the general theory of optimal stopping in
the “Markovian” setting both for discrete and continuous time. The book by Chow,
Robbins & Siegmund [31] gives a detailed treatment of optimal stopping problems
for general stochastic processes in discrete time using the “martingale” approach.
The present Chapter I is largely based on results exposed in these books and
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other papers quoted above. Further developments of optimal stopping following
the 1970’s and extending to more recent times will be addressed in the present
monograph. Among those not mentioned explicitly below we refer to [105] and
[153] for optimal stopping of diffusions, [171] and [139] for diffusions with jumps,
[120] and [41] for passage from discrete to continuous time, and [147] for optimal
stopping with delayed information. The facts of dual problem (2.2.88)–(2.2.92)
were used by a number of authors in a more or less disguised form (see [36], [13],
[14], [176], [91], [95]).

Remark on terminology. In general theory of Markov processes the term ‘stop-
ping time’ is less common and one usually prefers the term ‘Markov time’ (see e.g.
[53]) originating from the fact that the strong Markov property remains preserved
for such times. Nevertheless in general theory of stochastic processes, where the
strong Markov property is not primary, one mostly uses the term ‘stopping’ (or
‘optional’) time allowing it to take either finite or infinite values. In the present
monograph we deal with both Markov processes and processes of general struc-
ture, and we are mainly interested in optimal stopping problems for which the
finite stopping times are of central interest. This led us to use the “combined”
terminology reserving the term ‘Markov’ for all and ‘stopping’ for finite times (the
latter corresponding to “real stopping” before the “end of time”).
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[181] Schröder, M. (2003). On the integral of geometric Brownian motion. Adv.
in Appl. Probab. 35 (159–183).

[182] Schrödinger, E. (1915). Zur Theorie der Fall- und Steigversuche an
Teilchen mit Brownscher Bewegung. Physik. Zeitschr. 16 (289–295).

[183] Shepp, L. A. (1967). A first passage time for the Wiener process. Ann.
Math. Statist. 38 (1912–1914).

[184] Shepp, L. A. (1969). Explicit solutions of some problems of optimal stop-
ping. Ann. Math. Statist. 40 (993–1010).

[185] Shepp, L. A. and Shiryaev, A. N. (1993). The Russian option: Reduced
regret. Ann. Appl. Probab. 3 (631–640).

[186] Shepp, L. A. and Shiryaev, A. N. (1994). A new look at pricing of the
“Russian option”. Theory Probab. Appl. 39 (103–119).



490 Bibliography

[187] Shiryaev, A. N. (1961). The detection of spontaneous effects. Soviet Math.
Dokl. 2 (740–743).

[188] Shiryaev, A. N. (1961). The problem of the most rapid detection of a
disturbance of a stationary regime. Soviet Math. Dokl. 2 (795–799).

[189] Shiryaev, A. N. (1961). A problem of quickest detection of a disturbance
of a stationary regime. (Russian) PhD Thesis. Steklov Institute of Mathe-
matics, Moscow. 130 pp.

[190] Shiryaev, A. N. (1963). On optimal methods in quickest detection prob-
lems. Theory Probab. Appl. 8 (22–46).

[191] Shiryaev, A. N. (1966). On the theory of decision functions and control
of a process of observation based on incomplete information. Select. Transl.
Math. Statist. Probab. 6 (162–188).

[192] Shiryaev, A. N. (1965). Some exact formulas in a “disorder” problem.
Theory Probab. Appl. 10 (349–354).

[193] Shiryaev, A. N. (1967). Two problems of sequential analysis. Cybernetics
3 (63–69).

[194] Shiryaev, A. N. (1969). Optimal stopping rules for Markov processes with
continuous time. (With discussion.) Bull. Inst. Internat. Statist. 43 (1969),
book 1 (395–408).

[195] Sirjaev, A. N. (1973). Statistical Sequential Analysis: Optimal Stopping
Rules. American Mathematical Society, Providence. (First Russian edition
published by “Nauka” in 1969.)

[196] Shiryayev, A. N. (1978). Optimal Stopping Rules. Springer, New York–
Heidelberg. (Russian editions published by “Nauka”: 1969 (first ed.), 1976
(second ed.).)

[197] Shiryaev, A. N. (1999). Essentials of Stochastic Finance. Facts, Models,
Theory. World Scientific, River Edge. (Russian edition published by FASIS
in 1998.)

[198] Shiryaev, A. N. (2002). Quickest detection problems in the technical anal-
ysis of the financial data. Mathematical Finance—Bachelier Congress (Paris,
2000), Springer, Berlin (487–521).

[199] Shiryaev, A. N. (2004). Veroyatnost’. Vol. 1, 2. MCCME, Moscow (Rus-
sian). English translation: Probability. To appear in Springer.

[200] Shiryaev, A. N. (2004). A remark on the quickest detection problems.
Statist. Decisions 22 (79–82).



Bibliography 491

[201] Siegert, A. J. F. (1951). On the first passage time probability problem.
Phys. Rev. II 81 (617–623).

[202] Siegmund, D. O. (1967). Some problems in the theory of optimal stopping
rules. Ann. Math. Statist. 38 (1627–1640).

[203] Siegmund, D. O. (1985). Sequential Analysis. Tests and Confidence Inter-
vals. Springer, New York.

[204] Smoluchowski, M. v. (1913). Einige Beispiele Brown’scher Molekularbe-
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